
Attachment 2 
Reliability Statistics for Evaluating Sediment Toxicity Predictive Models 

 
It is surprisingly difficult to provide an adequate definition of the reliability of the sediment 
toxicity predictive models.  Reliability in the context of the BERA is a general term indicating 
the level of agreement between predicted toxicity and true toxicity as represented by empirically 
measured sediment toxicity test results.  The best test of a model’s predictions is its future 
performance in predicting toxicity at locations currently without empirical toxicity data.  The 
LWG subjected several lines of evidence in the BERA to reliability analyses to determine their 
utility in the BERA.  These include the bulk sediment quality benchmarks such as probable 
effect concentrations (PECs), the floating percentile model (FPM) predictions of sediment 
toxicity from bulk sediment chemistry data, and the logistic regression model (LRM) predictions 
of the probability of toxicity from bulk sediment chemistry data.   
 
It should first be recognized, as EPA has discussed elsewhere, that elimination of a line of 
evidence and its findings from the conclusions of the BERA based on a perceived lack of 
reliability is a risk management decision.  Risk management decisions within the BERA are 
inappropriate and unacceptable to EPA.  All lines of evidence must be fully discussed and 
identified during risk characterization.  All chemicals of concern identified by all lines of 
evidence in the draft BERA, including those rejected by LWG due to reliability concerns must be 
forwarded to the feasibility study.  It is acceptable to discuss model reliability in terms of the 
uncertainty associated with model predictions. 
 
Nearly all reliability estimates under discussion in the BERA are ultimately derived from 
categorizing model predictions against empirically measured toxicity in a contingency table.  A 
contingency table may have any number of rows and columns of two or more.  In the BERA, 
there are four levels of toxicity with two levels of effect (a 2 x 4 contingency table).  For 
simplicity of discussion the examples herein are based on a 2 x 2 contingency table, with the four 
possible model predictions as shown in Figure 1.  

 
Predictive models of dichotomous data (e.g. toxic/nontoxic, presence/absence, diseased/healthy, true/false, etc.)
are often evaluated for predictive accuracy using an confusion matrix.  A confusion matrix is a 2 x 2 contngency
table containing counts (not proportions or percentages) of the following four types of model predictions:

A - true positives (e.g. toxic samples the model correctly predicts to be toxic)
B - false positives (e.g. nontoxic samples the model incorrectly predicts to be toxic)
C - false negatives (e.g. toxic samples the model incorrectly predicts to be nontoxic)
D - true negatives (e.g. nontoxic samples the model correctly predicts to be nontoxic)

Toxic Nontoxic Totals
Toxic A B Samples predicted to be toxic (A + B)

Nontoxic C D Samples predicted to be nontoxic (C + D)
Totals Toxic 

samples 
(A + C)

Nontoxic 
samples 
(B + D)

N = A + B 
+ C + D

Predicted toxicity

Observed toxicity

 
 

Figure 1.  Example 2 x 2 contingency table showing the four possible model predictions 
(true positives, false positives, false negatives, true negatives). 
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Literature describing reliability of predictive models such as those used in the BERA is found in 
many scientific disciplines.  Reliability is commonly discussed in the fields of ecology, medical 
diagnostics, and meteorology/climatology.  Thus, the literature cited in this comment is taken 
primarily from these scientific fields, and is applied to the reliability questions at hand in the 
BERA.  The terminology used by statisticians in these fields is first presented in Table 1, as it 
differs in several areas from the terminology used by the LWG.  Also, EPA has identified several 
additional reliability metrics not evaluated in the BERA that we believe possess advantages over 
the reliability metrics evaluated by LWG.  All reliability statistics discussed in this comment are 
defined in Table 1. 
 
Table 2 describes what question each reliability statistic answers, along with its range of possible 
values and some description of how to interpret each statistic.  Two of the most commonly used 
reliability metrics in the statistical literature for evaluating predictive model accuracy are the 
correct classification rate (called overall reliability in the BERA) and the kappa statistic (Looney 
2002), which was not used in the BERA.   
 
Reliability Statistics Used in the BERA, Other Available Reliability Statistics 
 
Attachment 6, pages 40-41 of the draft BERA describes the seven reliability statistics used by 
LWG in the BERA.  They are:  false negative rate; false positive rate; sensitivity; efficiency 
(more commonly called specificity in the literature); predicted hit reliability; predicted no-hit 
reliability; and overall reliability.  As noted in the BERA, these statistics have been previously 
used with other sets of sediment toxicity data in the Pacific Northwest.  These same statistics are 
also commonly used in other scientific fields. 
 
As noted in Table 2, each of the above seven reliability statistics answers a different question 
about predictive model performance or sediment quality benchmark predictive accuracy.  Each 
statistic provides useful information to EPA risk assessors and risk managers.  As no one statistic 
provides all information needed by EPA to fully evaluate predictive model accuracy or sediment 
quality benchmark reliability, EPA concurs with LWG that multiple reliability statistics are 
needed to fully describe predictive model or sediment quality benchmark accuracy. 
 
Many other reliability statistics can be calculated from contingency tables (Fielding and Bell 
1997, Byrt et al. 1993, Glas et al. 2003, Tartaglione 2010).  Among them are several variations 
of Cohen’s kappa, whose value when maximized is a commonly used method to evaluate logistic 
regression models, in the same way that maximizing a correlation coefficient is used to identify 
the best fitting linear regression model of a data set.  The reliability statistics employed by LWG 
are applied to overall model accuracy, and are not well suited for making toxicity predictions at 
individual sediment sampling locations.  Other reliability statistics not used by LWG in the 
BERA, such as positive and negative likelihood ratios, are useful in predicting the chances of 
toxicity at individual sampling locations with known sediment chemistry.  This information will 
be particularly useful in the feasibility study.  Finally, two additional benchmarks, bias and 
chance prediction rate, give the direction of bias of a sediment benchmark (i.e. benchmark either 
underpredicts or overpredicts toxicity), and the probability that a model makes correct 
predictions solely due to chance, respectively.  Bias and chance values are particularly useful in 
the uncertainty analysis of the BERA. 
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Several of the reliability statistics in Table 1 are complements of each other (i.e. their sums equal 
1.0).  It is apparent that as one value in a complement pair increases, its complement must 
decrease.  Other reliability statistics often provide the most useful information if evaluated in 
tandem with a second reliability estimate, as shown below. 
 
Complement pairs    Evaluate in tandem 
- Overall reliability, misclassification rate - Sensitivity, specificity 
- Prevalence, Overall diagnostic power - Predicted hit / no-hit reliability 
- Sensitivity, False negative rate  - Positive / negative likelihood ratio 
- Specificity, False positive rate - Kappa, prevalence adjusted bias adjusted kappa 

(PABAK) 
 
Prevalence and What We Know About Sediment Toxicity in Portland Harbor 
 
Discussed only briefly in the BERA, and not in the context of predictive model accuracy, is a 
term called prevalence.  In the context of the BERA, prevalence is the true proportion of the 
stations with measured toxicity data that exhibit toxicity.  Four levels of toxicity have been 
defined in the BERA (Levels 0, 1, 2 and 3; or no, low, moderate and severe toxicity).  For 
feasibility study purposes, toxic is defined as the number of stations exhibiting moderate or 
severe toxicity (Level 2 or 3), while nontoxic stations have no or low toxicity (Level 0 or 1).  As 
will be shown, prevalence has a major impact on the values and interpretation of reliability 
estimates generated by LWG in the draft BERA. 
 
The Portland Harbor BERA has a total of 293 stations with co-occurring toxicity and sediment 
chemistry data.  These 293 stations constitute the empirical data set used to develop the site 
specific versions of the logistic regression model and floating percentile model.  Toxicity 
prevalence varies among the four toxicity endpoints (Chironomus dilutus survival and biomass, 
Hyalella azteca survival and biomass) as shown in Table 3. 
 
Table 3.  Number of stations exhibiting toxicity and prevalence of toxicity (in parenthesis) 
among the four sediment toxicity test endpoints in the BERA. 
 

Test 
Level 0 

(no toxicity) 
Level 1 
(low) 

Level 2 
(moderate) 

Level 3 
(severe) 

Chironomus 
survival 188 (0.642) 54 (0.184) 19 (0.065) 32 (0.109) 

Chironomus 
biomass 201 (0.686) 37 (0.126) 12 (0.041) 43 (0.147) 

Hyalella 
survival 253 (0.863) 19 (0.065) 2 (0.0068) 19 (0.065) 

Hyalella 
biomass 167 (0.570) 53 (0.181) 43 (0.147) 30 (0.102) 

 
Sediment Quality Benchmark Effects on Reliability Statistics 
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It seems obvious that a change in the value of a sediment quality benchmark will alter the value 
of reliability statistics (Figure 2).  Within a given toxicity data set, as the value of a benchmark 
increases, the number of stations identified as false positives (i.e. the number of nontoxic stations 
incorrectly identified as toxic) will decrease, but the number of false negative stations (i.e. the 
number of toxic stations incorrectly identified as not causing toxicity) will increase (Figure 2C).  
Conversely, if the value of the benchmark is lowered, the number of false positive values will 
increase, at the expense of a decrease in the number of false negative values (Figure 2B).  The 
extent of the increase or decrease is dependent not only on the selected value of the sediment 
quality benchmark, but also on the amount of overlap between sediment chemical concentrations 
associated with toxicity and the presumably lower sediment concentrations that do not elicit 
toxicity (Figure 2D). 
 

 

B A
TPF = True Positive Fraction 
FPF = False Positive Fraction 
FNF = False Negative Fraction 
TNF = True Negative Fraction 

Sediment quality 
benchmark 

Nontoxic Toxic 

 

D C 

 
Figure 2.  Sediment quality benchmark threshold effects on some reliability statistics.  A. 
Benchmark with good ability to separate toxic from nontoxic stations, as shown by low 

proportion of both false positives and false negatives; B. Low benchmark resulting in few 
false negatives, but a high proportion of false positives; C. High benchmark resulting in 
few false positives, but a high proportion of false negatives; D. Site with little separation 
between sediment chemistry associated with toxic and nontoxic stations, meaning even a 
good model or benchmark has little ability to discriminate between toxic and nontoxic. 

 
The changes in the proportion of true positives, true negatives, false positives and false negatives 
caused solely by changes in the value of a sediment quality benchmark (Figure 2) illustrate the 
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information needed to identify the most reliable and accurate models or sediment quality 
benchmarks in the BERA.  EPA believes the most reliable and accurate predictive models and 
benchmarks maximize the agreement between predicted and measured toxicity, while 
minimizing the number of incorrect predictions of toxicity.  Thus, the most reliable model is 
unlikely to be one that meets a predefined value or range of one or more reliability statistics. 
 
The BERA is not a competition between multiple approaches of estimating sediment toxicity to 
benthic biota, with the winner being the most reliable.  Each of the three primary lines of 
evidence evaluating sediment chemistry (bulk sediment chemistry benchmarks such as PECs, 
logistic regression models and floating percentile models) provide different information to EPA 
risk assessors and risk managers.  Sediment quality benchmarks provide information about 
sediment chemical concentrations associated with adverse effects to benthic biota at other 
locations in North America.  Logistic regression models provide information about the 
probability of toxicity to benthic biota from mixtures of chemicals.  The floating percentile 
model provides information about predicted error rates of sediment benchmarks derived from 
organisms exposed to mixtures of chemicals.   
 
The different information obtained from each of these three lines of evidence is a primary reason 
EPA required their inclusion in the problem formulation for the BERA.  At a site where sediment 
remediation is likely to be the primary means of reducing ecological risks to benthic biota, the 
risk characterization conclusions and their uncertainties from all three lines of evidence must be 
reported in the final BERA, because part of EPA’s risk assessment and risk management 
determinations will be made based on concordance between these multiple lines of evidence. 
 
Conditional Probabilities 
 
The values of the reliability statistics calculated by the LWG, as well as the additional reliability 
statistics identified by EPA in Table 1 are dependent on one or more factors.  One obvious factor 
affecting reliability statistics is the previously discussed threshold value of the sediment quality 
benchmark used to divide toxic concentrations from nontoxic concentrations.  Changes in the 
cell counts of a contingency table (Figure 1) will affect the calculated values of any reliability 
statistic for which the value of one or more cell counts changes if the cell(s) whose count 
changes is in the formula to calculate the reliability statistic (Table 1). 
 
Many, but not all of the reliability statistics in Table 1 depend on the prevalence of toxicity in the 
datasets used to develop the predictive models.  This can be demonstrated by rewriting the 
formulas used to calculate reliability statistics (Table 1) in terms of prevalence.  As one example, 
the commonly used overall reliability statistic can be written in terms of prevalence, sensitivity 
and specificity (Fielding and Bell 1997), in addition to the simpler calculation shown in Table 1 
(sum of correctly predicted toxic stations plus correctly predicted nontoxic stations divided by 
the total number of stations with measured toxicity data). 
 
Floating percentile model runs begin with the user defining an allowable false negative rate.  By 
changing false negative rates in different FPM runs, the cell counts within a contingency table 
must change to account for the change in the predefined false negative rate, and thus the values 
of the calculated reliability statistics for each FPM run also change. 
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The dependence of many draft BERA reliability statistics on other events or factors places the 
LWG’s reliability statistics within the realm of conditional probabilities.  Conditional probability 
is the probability of an event given (or contingent upon) another event that has already occurred, 
e.g. the probability of a toxic effect Y on a species given prior exposure of the species to 
chemical X.   
 
In the BERA, the fact that the reliability statistics used by the LWG are conditional probabilities 
is important only to the extent that the user of reliability statistics needs to be aware of the 
following.  Changes in the sediment quality benchmark value and/or the prevalence of toxicity 
will result in changes in the calculated values of the various reliability statistics in the BERA.  
Prevalence effects on the calculated values of reliability statistics, if not accounted for or at least 
acknowledged, will affect the meaning, interpretation and utility of the reliability statistics. 
 
However, conditional probability statistics become very important within the Portland Harbor 
feasibility study.  This is because conditional probabilities can help answer risk management 
questions about sediment quality benchmarks in the feasibility study.  Specifically, conditional 
probability statistics can be used to provide guidance in answering questions such as the 
following:  “if a chemical sediment quality benchmark is exceeded at a sampling station without 
measured toxicity data, what is the probability that station would be toxic to benthic biota and 
requires remediation?” 
 
EPA expects description of model and benchmark uncertainties to be the primary use of 
reliability statistics in the BERA.  Identification of predictive models and sediment quality 
benchmarks that maximize the agreement between predicted and measured toxicity (i.e. 
simultaneously minimize both false positives and false negatives) is also a valid use of reliability 
statistics in the BERA.  Use of reliability statistics to eliminate evaluation of lines of evidence, 
predictive models or sediment quality benchmarks to quantify risks is not an acceptable use of 
reliability statistics in the BERA. 
 
Predictive Model Calibration and Validation 
 
Two additional terms require definition before predictive model reliability can be fully 
evaluated.  They are model calibration and model validation.  Calibration is the process by which 
model parameters, predictive variables and/or the model structure itself is altered to produce 
better agreement between model predictions and an empirical dataset.   Statisticians term the 
empirical dataset used to calibrate a model the “gold standard” or “training set”.  This is because 
it represents the real world situation the model is trying to replicate.  The ideal goal for model 
calibration is to develop a predictive model with 100% accuracy (i.e. all cases are correctly 
classified, with no false positives or false negatives). 
 
Validation occurs after a model is calibrated.  Model validation compares model predictions 
from a calibrated model to measured results from a dataset not used to develop the model.  The 
EPA recommended approach for evaluating benthic risk in the BERA (MacDonald and Landrum 
2008) suggested one of two methods be used to validate the LRM and the FPM:  validation with 
a subset of the data excluded from the original development of the models; or to split the existing 
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293 stations with toxicity data into two subsets, with one being used to calibrate, the other used 
to validate the calibrated models.   
 
Without any effort in the BERA to validate either the FPM or LRM predictions, the BERA 
makes an implicit assumption that the overall reliability of sediment quality benchmarks derived 
from both the FPM and the LRM to predict toxicity at stations without empirical toxicity data 
will be equal to the overall reliability of the models as calculated from the 293 stations used to 
derive the models. 
 
As summarized by Olden et al. (2002), statisticians have long known using the same data to both 
calibrate and validate a model leads to an overstated and biased estimate of model reliability.  
This is because the calibrated model has been optimized to evaluate the unique characteristics 
and variability in the training data set (the gold standard), and therefore loses predictive ability 
beyond the calibration dataset.  A closely related issue, and one germane to Portland Harbor, is 
the situation where the training data set and the data set on which the model is to be used to 
predict toxicity (i.e. Portland Harbor stations without measured toxicity) are similar.  In this 
situation, the apparent predictive accuracy of a model will also be overestimated.  This 
overestimation of accuracy reflects the ability of the predictive model to reproduce the input to 
the model, rather than the model’s ability to interpolate and extrapolate toxicity in a second, 
independent data set. 
 
As both the site specific floating percentile and logistic regression models used all 293 stations 
with co-occurring toxicity and sediment chemistry data during model development in the draft 
BERA, both of these models are calibrated but not validated with Portland Harbor data.  Generic 
sediment quality benchmarks, such as probable effect concentrations, have been developed with 
non-Portland Harbor data, and are being applied to Portland Harbor in an effort to identify 
unacceptable ecological risks.  The generic sediment quality benchmarks are the only sediment 
benchmarks in the draft BERA whose predictive accuracy can be validated using empirical 
Portland Harbor data. 
 
Prevalence Affects and Can Bias Conditional Probability Reliability Statistics 
 
Several investigators have noted that if, in a model calibration dataset, the prevalence of the two 
endpoints is equal (i.e. 50% of samples are toxic, 50% are nontoxic), any of the reliability 
measures in Table 1 do a reasonably good job of describing model predictive accuracy (Fielding 
and Bell 1997, Manel et al. 2001, Freeman and Moisen 2008).  But as shown in Table 3, the 
model calibration datasets for Portland Harbor do not have equal prevalence of toxic and 
nontoxic samples.  Toxicity prevalence as designated for the feasibility study for the four 
sediment toxicity endpoints is shown in Table 4. 
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Toxicity test Count of toxic stations Prevalence of Level 2 

plus Level 3 toxicity 
Chironomus survival 49 / 293 0.167 (16.7%) 
Chironomus biomass 55 / 293 0.188 (18.8%) 
Hyalella survival 21 / 293 0.072 (7.2%) 
Hyalella biomass 73 / 293 0.249 (24.9%) 

 
Table 4.  Prevalence of toxic effects of sediment contaminants as applied to the Portland 

Harbor feasibility study.  Toxic is defined as the sum of the number of stations with Level 2 
and Level 3 effects which are statistically significantly elevated above control. 

 
Several investigators (Olden et al. 2002, Fielding and Bell 1997) have found that as prevalence 
increasingly departs from a 1:1 ratio in a model calibration dataset, the effects of prevalence on 
the values of many of the predictors of model reliability shown in Table 1 becomes increasingly 
large.  In some situations, the predictions of model accuracy can also become statistically biased.  
The result of the prevalence and bias effects on the values of measures used to evaluate model 
predictive accuracy is that measures not adjusted for or which take into account these effects 
become increasingly poor predictors of model reliability.   
 
Prevalence effects on three of the reliability statistics used by the LWG (overall reliability, 
predicted hit reliability and predicted no-hit reliability) can be directly shown by rewriting the 
formulas for calculating these three statistics (Table 1) in terms of prevalence (predicted hit 
reliability = positive predictive power or PPP; predicted no-hit reliability = negative predictive 
power or NPP. 
 
Overall reliability = [(prevalence) x (sensitivity)] + [(1 – prevalence) x (specificity)] 
 
                         prevalence x sensitivity 
 PPP = --------------------------------------------------------------- 
       prevalence x sensitivity + (1 - specificity) x (1 - prevalence) 
 
                      specificity x (1 - prevalence) 
 NPP = --------------------------------------------------------------- 
       (1 - sensitivity) x prevalence + specificity x (1 - prevalence) 
 
The remaining four LWG employed reliability statistics consist of two complement pairs:  
sensitivity and false negative rate, and specificity and false positive rate.  Any effect of 
prevalence on one of the complement pair statistics will also affect the other statistic in that 
complement pair. 
 
Effects of prevalence on sensitivity, specificity and their complements, false negative and false 
positive rates, is more difficult to demonstrate.  Some investigators believe that sensitivity and 
specificity are not affected by prevalence (e.g. Allouche et al. 2006).  Other investigators (e.g. 
Bruner et al. 2002c) believe they have shown sensitivity and specificity are affected by 
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prevalence.  However, prevalence effects on the values of sensitivity and specificity have been 
mathematically demonstrated by Choi (1997) for predictive tests.   
 
Choi (1997) defines a predictive test in epidemiology as the situation where a positive test 
indicates the presence of a risk factor that causes a diseased state. Choi (1997, page 82) goes on 
to provide an example of a predictive test as when a chemical exposure causes a gold standard 
positive (a subsequent disease).  If one replaces the word disease with toxicity, Choi’s definition 
of a predictive test exactly describes the use of sediment predictive toxicity models in Portland 
Harbor:  a chemical exposure which, if it exceeds a sediment quality benchmark, would be 
expected to elicit some level of toxicity in benthic biota.   
 
At least two literature reviews of multiple predictive models, one of species presence-absence 
models in ecology (Manel et al. 2001), the second of medical diagnostic tests (Whiting et al. 
2004) have also found that prevalence affects both sensitivity and specificity.  Prevalence would 
also affect the complements of sensitivity and specificity, the false negative and false positive 
rates.  Both reviews found that in the real world, prevalence affects the sensitivity and specificity 
of models.  Both reviews found an increase in sensitivity as prevalence increased (i.e. models do 
a better job of predicting toxicity as the prevalence of toxicity increases in the data set).  When 
prevalence decreases, Manel et al. 2001 found that true negatives were more effectively 
predicted as prevalence decreased (i.e. specificity increased as prevalence decreased), while 
Whiting et al. 2004 found mixed results on prevalence effects on specificity. 
 
Finally, Choi (1997) provided a possible explanation of why different researchers have come to 
different conclusions regarding whether or not sensitivity and specificity (or their complements 
false negative and false positive rates) are affected by prevalence.  Choi (1997) proposed that the 
differences may be due to confounding by one or more of the underlying risk factors. 
 
The practical implications of prevalence effects on the values calculated from the reliability 
statistics evaluated by the LWG are as follows.  Consider the definitions of three of the reliability 
statistics evaluated by the LWG: 
 

• Correct classification rate (overall reliability) is the proportion of stations whose results 
were correctly predicted (either as toxic or nontoxic) 

 
• Positive predictive power (PPP or predicted hit reliability) is the proportion of stations 

eliciting toxicity that are correctly predicted.  
 

• Negative predictive power (NPP or predicted no-hit reliability) is the proportion of 
stations not eliciting toxicity that are correctly predicted.  

 
These proportions by themselves are of only limited utility, however.  This is because the 
predictive value of these three reliability statistics directly depends on the prevalence of toxicity 
at the 293 stations tested; which may well differ from the prevalence at the remaining Portland 
Harbor stations without measured toxicity data.  
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The rarer toxicity is in a data set (i.e. the lower the prevalence) the more sure we can be that a 
negative test indicates no toxicity, but the less sure we can be that a positive result really 
indicates the presence of toxicity. This is the reason that, in low prevalence data sets such as 
Portland Harbor’s, low sediment toxicity benchmarks (e.g. threshold effect concentrations or 
TECs) indicating the absence of toxicity if not exceeded appear to be more reliable than higher 
sediment quality benchmarks (e.g. probable effect concentrations or PECs), which are designed 
to indicate the presence of toxicity if exceeded.    
 
If the prevalence of toxicity is very low, the positive predictive power (predicted hit reliability) 
cannot be close to its maximum value of 1, even if both the sensitivity and specificity of a 
predictive model or sediment quality benchmark are high. The implication of this for low 
prevalence data sets such as those from Portland Harbor is that it is inevitable that a number of 
locations predicted to be toxic will be false positives. 
 
The conclusion that prevalence can affect the value of all seven of the reliability statistics used 
by the LWG in the BERA can therefore be directly demonstrated for three of the reliability 
statistics, and is supported by both theoretical mathematical and applied observational studies for 
the remaining four reliability statistics. 
 
Use of reliability statistics not affected by prevalence (or ones which can be adjusted to account 
for prevalence) to evaluate predictive model or sediment benchmark accuracy is highly desirable 
in both the BERA and feasibility study.  This is because of the primary intended use of both 
predictive toxicity models and sediment quality benchmarks, which is to estimate toxicity or risk 
to benthic biota at locations without measured toxicity data.  Selecting a predictive toxicity 
model or sediment quality benchmarks with statistics not dependent on prevalence means that a 
model or benchmarks derived from the 293 stations with co-occurring toxicity and sediment 
chemistry data can easily be transferred to other parts of Portland Harbor with a different 
prevalence of toxicity in the population.  Such a transfer should result in no change in the 
accuracy of model or benchmark predictions than those derived from the stations with co-
occurring toxicity and sediment chemistry data.  This ability eliminates the need for assuming 
that toxicity prevalence at locations in Portland Harbor without empirical toxicity data is the 
same as it is in the 293 stations with measured toxicity data.   
 
Another way of saying this is that selection of a predictive model or sediment quality benchmark 
based on conclusions from statistics whose values are affected by prevalence is less desirable, 
because the reliability of the model or benchmarks will change with any change in prevalence of 
toxicity.  Such models or benchmarks may not be generally applicable harborwide, because at 
the very least, the reliability of the model or benchmarks will change with changes in prevalence.  
This is an undesirable situation if we wish to have confidence in predictions of toxicity from a 
model or sediment quality benchmarks throughout the entire harbor, not just at the 293 locations 
with co-occurring sediment toxicity and chemistry data. 
 
 Bias 
 
Bias, termed systematic error in the epidemiology literature, favors particular results. A 
predictive model is biased if it systematically overpredicts or underpredicts an outcome.  Within 
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the BERA, a predictive model would be biased if it consistently tends to either overpredict or 
underpredict toxicity.  In other words, a model is biased if the sediment quality benchmark 
concentrations derived from the model are either too low, resulting in an overprediction of the 
number of stations exhibiting toxicity, or are too high, in which case the number of stations 
exhibiting toxicity is underpredicted. 
 
The magnitude of bias within a particular model is difficult to calculate, as it is dependent on 
several factors specific to a given data set and model run, including the selected threshold (i.e. 
selected sediment quality benchmark), sensitivity, specificity and prevalence (Freeman and 
Moisen 2008, Allouche et al. 2006, Gambino 1997).  In particular, the reliability of models 
derived from low prevalence data sets is particularly sensitive to the selection of the threshold 
(Freeman and Moisen 2008).  In practical terms, this means that a small change in a sediment 
quality benchmark for a data set with low prevalence of toxicity can result in a large change in 
the apparent accuracy of the model. 
 
However, a relatively simple bias estimator can be calculated from a contingency table (Table 1) 
that gives the direction of bias, if any, of a given model.  The bias estimator given in Table 1 
answers the following question:  How similar are the frequencies of predicted toxicity from a 
model and the frequency of observed empirical toxicity in the dataset used to develop the model 
(the gold standard)?  It indicates whether the predictive model has a tendency to underpredict or 
overpredict toxicity, with the tendency to under- or over predict increasing as the bias estimator 
increasingly departs from unity.  The bias estimator has a range from 0 to ∞, and is interpreted 
as follows:  
 
Bias  < 1:  Toxicity underpredicted (sediment quality benchmark too high) 
Bias = 1:  No bias 
Bias > 1:  Toxicity overpredicted (sediment quality benchmark too low) 
 
There are several reasons for the effects of prevalence on the values of model predictive 
accuracy measures.  A primary one is that none of the reliability measures evaluated by LWG 
utilize all of the information regarding model predictive accuracy that is available in a confusion 
matrix (Fielding and Bell 1997).  This loss of information can skew reliability measures.  
Another type of information loss occurs in the situation where toxicity prevalence is low, the 
case for all four Portland Harbor sediment toxicity data sets.  The problem is that a severely 
unbalanced data set does not contain sufficient information to allow one to distinguish between 
an excellent model and a more mediocre predictive model (Hripcsak and Heitjan 2002).  Note 
that this is not an issue of sample size, but instead is an issue of the relative proportions of toxic 
vs. nontoxic samples in the gold standard used to derive the predictive model.   
 
The effect of the latter information loss (i.e. low prevalence) can be demonstrated with the 
commonly used overall reliability measure (correct classification rate).  Overall reliability works 
well as a predictor of model accuracy when the four contingency table cell counts (true positives 
[A], false positives [B], false negatives [C] and true negatives [D]) are comparable to each other, 
but tends towards unity (i.e. 100% overall reliability) when D >> (A + B + C), irregardless of 
actual model performance (Delitala 2005).  This last situation occurs for all four Portland Harbor 
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sediment toxicity tests, as stations with no (Level 0) or low (Level 1) toxicity drastically 
outnumber stations exhibiting moderate (Level 2) or severe (Level 3) toxicity (Table 3). 
 
Unfortunately, all of the reliability measures evaluated by LWG in the BERA are subject to this 
prevalence effect and the potential for statistical bias, and are not as useful as reliability measures 
as they would first appear.  The prevalence and bias effects will affect the values of the 
predictive accuracy estimation statistics of all models and sediment quality benchmarks used in 
the BERA.  Thus, our comments on reliability statistics should not be construed as a criticism of 
any particular predictive model or sediment benchmark in the BERA. 
 
Example of Prevalence Effects on Reliability Estimates 
 
Because of the prevalence effect on the values of reliability statistics, several statisticians (Sim 
and Wright 2005, Lantz and Nebendahl 1996) have recommended that prevalence be reported in 
addition to the values of reliability statistics.  An extreme example of the prevalence effect on 
reliability statistics can be demonstrated with the Hyalella azteca survival results, where only 21 
out of 293 samples exhibit moderate or severe toxicity (toxicity prevalence of 7.2% as toxicity is 
defined in the feasibility study). 
 
The draft BERA proposed reliability goals for sediment quality benchmarks are given on pages 
40 – 41 of Attachment 6 of the draft BERA.  The LWG did not discuss these reliability goals 
with EPA prior to submission of the draft BERA, nor were they agreed to by EPA prior to 
submission of the draft BERA.  The reliability goals were as follows: 
 

• Correct classification rate (overall reliability) > 80% 
• Negative predictive power (predicted no-hit reliability) > 90% 
• False positive rate < 20% 
• False negative rate < 20% 

 
For the Hyalella survival data from Portland Harbor, it would be possible to obtain a overall 
reliability1 of 92.8% simply by defining a sediment quality benchmark higher than any chemical 
concentration at a nontoxic station, therefore correctly classifying all nontoxic stations as 
nontoxic, but also so high that it would incorrectly classify all empirically measured toxic 
stations as nontoxic (Figure 3).   
 

                                                 
1 Overall reliability’s dependence on prevalence is easily demonstrated by rewriting the overall reliability equation 
(Table 1) as its equivalent:  [(Prevalence) x (Sensitivity)] + [(1 – Prevalence) x (Specificity)]. 
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Observed toxicity
Toxic Nontoxic Totals

Toxic 0 0 Samples predicted to be toxic 0
Nontoxic 21 272 Samples predicted to be nontoxic 293

Totals
Toxic 

samples
Nontoxic 
samples

All 
samples 293

21 272

Measures of Predictive Model Classification Accuracy for: Hypothetical Hyalella  survival dataset
0.0717 = Prevalence = (A + C) / N
0.9283 = Correct classification rate (overall accuracy) = (A + D) / N
0.9283 = Overall diagnostic power = (B + D) / N
0.0000 = Sensitivity = A / (A + C)
1.0000 = Specificity = D / (B + D)
0.0000 = False positive rate = B / (B + D)
1.0000 = False negative rate = C / (A + C)

Not calculable = Positive predictive power = A / (A + B)
0.9283 = Negative predictive power = D / (C + D)
0.0717 = Misclassification rate = (B + C) / N
0.0000 = Bias = (A + B) / (A + C)

Predicted toxicity BA

C D

N

 
 
Figure 3.  Hypothetical Hyalella azteca survival sediment benchmark for Portland Harbor 
derived by setting the benchmark concentration so high as to incorrectly classify all toxic 

samples as nontoxic, to demonstrate the effect of prevalence on reliability statistics. 
 
Under the hypothetical situation illustrated in Figure 3, the reliability statistics used by the LWG 
in the draft BERA would have been calculated to be: 
 
Correct classification rate = [0 + 272] / 293 = 0.928 (92.8% correct classification) 
 
No-hit reliability = 272 / [21 + 272] = 0.928 (92.8% no-hit reliability) 
 
False positive rate = 0 / [0 + 272] = 0.0 (0% false positive rate) 
 
Under this hypothetical situation, the correct classification rate (overall reliability), predicted no-
hit reliability and the false positive rate all meet the reliability goals of the draft BERA.  Only the 
false negative rate would not meet the reliability goals of the draft BERA, as shown below. 
 
False negative rate = 21 / [0 + 21] = 1.0 (100% false negative rate) 
 
It can also be observed that the bias (Table 1) for the hypothetical example shown in Figure 3 is 
the maximum possible bias that can be calculated for the situation where a sediment quality 
benchmark or predictive model underpredicts toxicity (i.e. sediment quality benchmark too 
high).  Figure 3 is an obvious example of the situation where the combination of low prevalence 
and a sediment benchmark that is too high results in a situation where many reliability statistics 
indicate acceptable model performance, while the model itself has no utility in identifying 
stations exhibiting toxicity.   
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A predictive model that sets sediment quality benchmark so high as to incorrectly classify all 
toxic stations as nontoxic would clearly have no utility in identifying toxic stations in either the 
BERA or the feasibility study.  The opposite situation, where a predictive model sets sediment 
quality benchmarks so low as to incorrectly classify all nontoxic stations as toxic, is unlikely to 
occur under the low prevalence found in the Portland Harbor sediment toxicity datasets.   
 
Sediment quality benchmarks for the Chironomus survival and biomass toxicity tests can also be 
defined to meet the draft BERA reliability goals for overall reliability, predicted no-hit reliability 
and false positive rate merely by defining a sediment quality benchmark so high that it 
incorrectly classifies nearly all toxic stations as nontoxic.  This situation occurs solely because of 
the relatively low prevalence of toxicity in the 293 stations with co-occurring empirical sediment 
toxicity and sediment chemistry data.  Only the Hyalella biomass test cannot be made to meet 
the draft BERA reliability goals merely by raising sediment quality benchmarks so high that 
most or all toxic stations are incorrectly classified as nontoxic.  This is because the toxicity 
prevalence observed in the Hyalella biomass test (24.9%) is higher than the reliability goal for 
the false positive rate (<20%). 
 
The ability of FPM sediment quality benchmarks derived from the three Portland Harbor 
sediment toxicity tests with prevalence less than 20% to meet many of the draft BERA reliability 
goals merely by setting a sediment quality benchmark so high that it incorrectly classifies most if 
not all toxic stations as nontoxic is of particular concern to EPA.  This is because of the basic 
concept behind the FPM, which is that adjustment of individual chemical concentrations in the 
FPM is unidirectional in an upward direction (as described on page 135 of the draft BERA), 
which can only result in higher sediment quality benchmarks.  Specifically, the FPM starts with a 
defined percentile of a data set that provides a low, predefined false negative rate, and then 
adjusts individual chemical concentrations upward until false positive rates are minimized, while 
retaining the predefined false negative rate. 
 
LWG’s Reliability Analyses Are Not True Measures of Model Predictive Accuracy 
 
The floating percentile model is defined to meet certain reliability goals that are not risk based.  
Indeed, the floating percentile model cannot even be run without an a priori definition of a false 
negative rate:  a management decision.  Therefore, the floating percentile model is arguably best 
described as a risk management tool, not a risk assessment tool.  Several reviewers of methods to 
evaluate predictive model reliability point out that reliability measures based on models meeting 
user specified requirements, or which intentionally account for sources of and costs associated 
with erroneous predictions fall into the realm of management decision methodologies (Freeman 
and Moisen 2008, Hale and Heltshe 2008, Liu et al. 2005, Fielding and Bell 1997).   
 
This last point is one of the major conclusions of our review of the reliability analyses in the 
draft BERA:  the LWG’s application of reliability measures in the draft BERA is not a true 
measure of model or sediment quality benchmark reliability, because one or more reliability 
measures (e.g. false negative rate) have been subjectively set at predefined values to meet risk 
management goals. 
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Reliability measures that require compliance with user specified requirements are not true 
measures of model predictive accuracy (Freeman and Moisen 2008).  Instead, they are subjective 
measures of model predictive accuracy.  This is because a specific value for one or more 
attribute (e.g. overall reliability, predicted no-hit reliability, false positive or false negative error 
rates) are predetermined.  While forcing a model to fit within one or more predetermined 
attributes can be appropriate to meet management goals within a feasibility study, such a process 
usually results in a model or benchmark that does not represent the maximum possible agreement 
between the gold standard data set used to calibrate a model and the predictions of toxic and 
nontoxic for stations without empirical toxicity data required in the BERA. 
 
Within the BERA, EPA expects the LWG to use objective approaches to determine predictive 
model accuracy and reliability.  By objective approaches, EPA means that predictive models 
must be calibrated in such a manner that the sediment quality benchmarks derived from the 
models are chosen to maximize the agreement between observed and model predicted toxicity 
for the 293 Portland Harbor stations for which co-occurring sediment toxicity and sediment 
chemistry data are available. 
 
To evaluate predictive model or sediment quality benchmark reliability, EPA believes that the 
most useful reliability measures for both the BERA and the feasibility study are metrics that 
utilize all available information from a contingency table, not just a subset of the available 
information.  Such measures do not suffer from the information loss that is inherent to the 
reliability measures used in the draft BERA.  Reliability measures also need to take into account 
the relatively low prevalence of toxicity in the four sets of sediment toxicity data from Portland 
Harbor. 
 
Reliability Measures That Are Not Affected by Prevalence 
 
One solution to the effect of prevalence on reliability estimates is to base model reliability 
evaluations on accuracy measures that can either be adjusted for prevalence, or whose values are 
not dependent on prevalence in the calibration dataset.  Such statistics also have the useful 
property of assessing the extent to which models correctly predict toxicity at rates that are better 
than chance predictions of accuracy.  Finally, to avoid information loss from not using all 
available information in a contingency table, a reliability statistic would need to be calculated 
using information in all cells in a contingency table.  A number of such statistics with these 
properties exist, but were not discussed or evaluated in the draft BERA.   
 
EPA believes that the additional statistics that can be derived from a contingency table (Table 1) 
and which have the above properties are in many respects superior measures of model and 
sediment quality benchmark predictive accuracy compared to the reliability statistics evaluated 
by LWG in the BERA.  These statistics are presented and discussed in the next several sections.  
We wish to reiterate that all of the reliability statistics referred to in this comment, both those 
used by the LWG and the additional statistics presented by EPA provide useful information to 
risk assessors and risk managers.  Each reliability statistic also answers a different question 
(Table 2).  While all reliability statistics provide useful information, the advantages and 
shortcomings of each reliability statistic with respect to evaluating model and sediment quality 
benchmark predictive accuracy must be recognized. 
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Agreement Between Predicted and Measured Toxicity Expected by Chance 

 
Any predictive model or sediment quality benchmark, no matter how good or poor, will make 
some number of correct predictions due solely to chance.  The most accurate and most useful 
predictive models and sediment quality benchmarks in the BERA are those that maximize the 
number of correct predictions over and above the number of correct predictions expected solely 
by chance. 
 
In order to describe predictive accuracy in terms of improvement over correct predictions 
obtained by chance, the proportion of all the correct predictions due solely to chance must be 
known.  Fortunately, the cell counts in a contingency table can be used to calculate the expected 
agreement between predicted and measured toxicity obtained by chance (Table 1).  Chance is the 
level of agreement expected between predicted and measured toxicity if a predictive model or 
sediment quality benchmark randomly classified stations as toxic or nontoxic. 
 
A commonly asked question is if modeled or sediment quality benchmark predictions of toxicity 
are better than those that can be obtained by chance.  A naïve answer to this question involves 
flipping a coin to decide whether a station is toxic or nontoxic, which at first glance would 
appear to result in a 50% overall reliability rate.  This naïve approach does not yield the right 
answer to the question regarding the number of correct predictions of toxicity due to chance, 
because the number of correct chance predictions is related to prevalence (Olden et al. 2002).  
The exact calculation of the chance agreement probability (Table 1) is among the more complex 
calculations derived from a contingency table (Fignre 1), but can be approximated by the simple 
formula2 below. 
 
Overall reliability due solely to chance probability ≈ 0.5 + (0.5 – prevalence)  
 
For the low prevalence toxicity data sets from Portland Harbor, chance agreement of correct 
predictions of toxicity will actually be greater than 50%.  Thus, the low prevalence provides 
upper limits or constraints on the improvement over chance agreement any Portland Harbor 
predictive model or sediment quality benchmark can provide. 
 

Odds Ratio 
 
One simply calculated statistic with the desirable properties of independence from prevalence, 
provides information on improvement of predictions over chance predictions, and calculated 
from all information in a contingency table is the odds ratio (Table 1).  The odds ratio is 
commonly used in epidemiology, where it is used to express the strength of association between 
exposure and disease (Glas et al. 2003).  The odds ratio is increasingly used in ecology (Manel et 
al. 2001).  Odds ratio can be defined as the ratio of the odds of toxicity in samples predicted to be 
toxic relative to the odds of toxicity in samples predicted to be nontoxic.  The odds ratio appears 
to be unaffected by prevalence (Glas et al. 2003, Fielding and Bell 1997), and also provides an 
                                                 
2 The approximate formula for the overall reliability due to chance probability assumes that under the null 
hypothesis that a predictive model performs no better than random assignment of toxic and nontoxic predictions, the 
number of correctly classified cases approximates a binomial distribution (Olden et al. 2002). 
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indicator of the improvement of a model or benchmark in predicting toxicity above chance 
predictions (Manel et al. 2001).  Unfortunately, the odds ratio cannot be calculated if one or 
more of the cells in a contingency table contains a count of zero. 
 
Odds can be defined as the ratio of the denominator of a probability or proportion to the 
numerator of the probability or proportion.  For example, if the probability of a horse winning a 
race is 50% (0.5 or ½), the odds of the horse winning are 2:1. 
 
The odds ratio is interpreted as follows.  As an example, a particular model or sediment quality 
benchmark results in the odds ratio being calculated as 6.2.  An odds ratio of 6.2 indicates that 
the odds for a prediction being correct that a station elicits toxicity is over 6 times greater than 
the odds for a prediction that a station elicits toxicity is incorrect.  The odds ratio is a measure of 
relative risk, meaning that it evaluates the general concept of comparing risks of toxicity at 
stations exposed to higher contaminant concentrations to toxicity risks at stations exposed to 
lower contaminant concentrations. 
 

Cohen’s kappa 
 
A statistic believed by some to be minimally affected by prevalence effects is Cohen’s kappa 
(usually just called kappa).  Kappa is commonly used to evaluate logistic regression models (Liu 
et al. 2005, Looney 2002).  Unlike linear regression, where the best model fit to data can be 
identified by maximizing either a correlation coefficient (r) or coefficient of determination (r2), 
logistic regression model output has no direct analog to r or r2.  Instead, the best fitting of a series 
of logistic regression models is often identified as the model which maximizes the value of 
kappa.   
 
Kappa maximization is commonly used in the fields of ecology and medical diagnostics as a 
measure of logistic regression model accuracy, and has been used to evaluate the accuracy of 
logistic regression based models of sediment toxicity (Bay et al. 2008).  More generally, kappa 
maximization is commonly used in the evaluation of contingency tables.  Mathematically, 
Feinstein and Cicchetti (1990) have demonstrated that the value of kappa can be affected by 
prevalence.  In practice, however, some (e.g. Feinstein and Cicchetti 1990), but not all 
statisticians (e.g. Manel et al. 2001) have been able to demonstrate that the value of kappa is 
affected by prevalence that departs from 50%.  Given the differences in the literature regarding 
the effect, or lack thereof, of prevalence on the value of kappa, the magnitude of prevalence 
effects on kappa may be model and application specific.  Given the widespread use of kappa in 
the scientific literature, particularly in evaluating logistic regression, and the fact that it uses all 
information available in a contingency table, and thus does not suffer from information loss, 
EPA believes kappa is a worthwhile statistic to evaluate during predictive model and sediment 
quality benchmark accuracy assessment in the uncertainty analysis of the BERA.  A pictoral 
representation of what values of kappa represent is presented in Figure 4. 
 
A potential problem with relying solely on kappa as a measure of model reliability was first 
described by Feinstein and Cicchetti (1990).  They observed that in some situations the 
phenomenon that a model would result in a high correct classification rate (high overall 
reliability), indicative of a good model, but the value of the kappa statistic would be low, 
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indicative of a poorly performing model.  The resolution of this apparent paradox proposed by 
Cicchetti and Feinstein (1990) was to not rely on a single measure of accuracy, but instead 
evaluate multiple measures of accuracy to obtain a more complete picture of accuracy.  As Table 
2 shows that each statistic that can be derived from a contingency table answers a different 
question, the recommendation of Cicchetti and Feinstein (1990) to look at multiple metrics when 
evaluating reliability appears to be a sound recommendation.  
 
 Hanssen-Kuipers Discriminant 
 
Allouche et al. (2006) have demonstrated mathematically that kappa is a special case of a more 
generally applicable statistic called the Hanssen-Kuipers discriminant (Hanssen and Kuipers 
1965) that is not affected by changes in prevalence.  Specifically, Allouche et al. (2006) showed 
kappa to be the special case of Hanssen-Kuipers when prevalence is 50%.  The more generally 
applicable Hanssen-Kuipers discriminant can be used to evaluate model reliability for any 
prevalence of an adverse effect. 
 
Hanssen-Kuipers is commonly used in meteorology and climatology to evaluate the predictive 
accuracy of weather and climate models, and is interpreted in the same way that values of kappa 
are interpreted.  The Hanssen-Kuipers discriminant is called the Youden’s J statistic in some of 
the older medical diagnostic literature, and has recently been called the true skill statistic (TSS) 
by ecological modelers.  All three terms refer to the same statistic.  Figure 4 also is a conceptual 
representation of what different values of the Hanssen-Kuipers discriminant mean. 
 

 
 
Figure 4.  Schematic relationship between kappa or the Hanssen-Kuipers discriminant to 
overall and chance agreement of model predictive accuracy.  Modified from Sim and 
Wright (2005). 
 
The calculated value of a Hanssen-Kuipers discriminant is not believed to be affected by the 
prevalence within a dataset (Woodcock 1976, Allouche et al. 2006).  As such, it is a reliability 
statistic whose value is unaffected by prevalence, thus making it a useful reliability measure 
under conditions where other reliability measures are skewed or biased by prevalence effects. 
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 Prevalence Adjusted Bias Adjusted Kappa (PABAK) 
 
Because both prevalence and bias may play a part in determining the value of kappa, adjustments 
have been proposed to account for possible bias and prevalence effects on kappa.  Kappa can be 
adjusted for prevalence by computing the average of contingency table cells A and D (Figure 1) 
and substituting this average for the actual counts in those cells. Similarly, a bias adjustment is 
performed by substituting the mean of contingency table cells B and C (Figure 1) for those actual 
cell counts. The kappa coefficient that results is referred to by its developers (Byrt et al. 1993) as 
the prevalence adjusted bias adjusted kappa (PABAK).   
 
Hoehler (2000) criticized the use of PABAK because he believes that the effects of bias and 
prevalence on the magnitude of kappa are themselves informative and should not be adjusted for 
and thereby disregarded.  Thus, Hoehler (2000) believes PABAK could generate a kappa value 
unrelated to the conditions for which the original predictive toxicity models were developed and 
would be applied.  Therefore, the PABAK coefficient on its own may be uninformative, 
providing little or no information, because it relates to a hypothetical situation in which no 
prevalence or bias effects are present.  However, if PABAK is presented in addition to, rather 
than in place of, the obtained value of kappa, Hoehler (2000) considered its use appropriate.  
Specifically, Hoehler (2000) believes that as part of a suite of reliability statistics including both 
kappa and PABAK, PABAK would give an indication of the likely effects of prevalence and bias 
alongside the kappa value derived from the specific measurement context studied.  Hoehler, 
therefore, is another statistician who recommends that model predictive accuracy be evaluated 
using multiple statistical measures. 
 
 Normalized Mutual Information (NMI) 
 
Unlike the other reliability measures in the draft BERA and this comment, the normalized 
mutual information (NMI) statistic originated in the field of information theory (Forbes 1995).  
In simplest terms, the NMI describes how much of the total available information in a 
contingency table is lost by a predictive model or sediment quality benchmark.  A perfect NMI 
score of one means that a model or benchmark captures all of the information in a data set.  
Formally, it is the difference between the overall information contained in the contingency table 
and that in the predictions, divided by the information contained in the observed toxic vs. 
nontoxic data (for Portland Harbor, the 293 stations with measured sediment toxicity data), all 
taken from one (Forbes 1995).   
 
Mathematically, the NMI is a measure of information based on Shannon’s entropy.  In 
information theory, entropy is a measure of the uncertainty associated with a random variable.   
Shannon entropy is a measure of the average information content one is missing when one does 
not know the true value of the random variable.  One application of Shannon entropy familiar to 
most biologists is the Shannon-Wiener species diversity index, with which the NMI shares many 
mathematical properties.  The Shannon-Wiener species diversity index is also based on Shannon 
entropy, and summarizes community structure based on two properties of the community:  
species richness and species evenness.  If one considers a sediment sampling location within 
Portland Harbor, we begin with no knowledge of whether or not a site is toxic to benthic biota.  
If we have a predictive model of toxicity or a sediment quality benchmark and measured 
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sediment chemistry, we have some information about toxicity.  But the information we have is 
uncertain, and we cannot be fully certain about toxicity at the site unless we go out and perform a 
toxicity test at the site.  This uncertainty is what the NMI attempts to describe. 
 
The NMI is not affected by prevalence in the data set (Manel et al. 2001, Fielding and Bell 
1997).  The NMI shares one disadvantage with the odds ratio.  If one or more of the cells of a 
contingency table contain a zero value, the NMI statistic cannot be calculated. 
 
 Interpretation of Kappa, Hanssen-Kuipers Discriminant and PABAK Values 
 
Landis and Koch (1977) have proposed the following as standards for strength of agreement for 
the kappa coefficient in the epidemiology literature:  
 
κ ≤ 0 = poor;  
κ between .01-.20 = slight;  
κ between .21-.40 = fair,  
κ between .41.-60 = moderate;  
κ between .61-.80 = substantial; and  
κ between .81-1 = almost perfect   
 
The choice of such an interpretive framework is, however, arbitrary.  The effects of prevalence 
and bias on kappa must be considered when judging its magnitude.  The same Landis and Koch 
(1977) interpretive framework can also be used to evaluate the values of the Hanssen-Kuipers 
discriminant and PABAK calculated from the predictive toxicity models. 
 
PABAK is an example of a reliability statistic whose value is adjusted for prevalence effects, as 
opposed to the Hanssen-Kuipers discriminant, which is a reliability statistic whose value is 
unaffected by prevalence.  EPA believes that reliability statistics either not affected by the 
prevalence of toxicity, or which can be adjusted to account for prevalence effects (e.g. kappa, the 
Hanssen-Kuipers discriminant, PABAK, odds ratio) are all likely better descriptors of toxicity 
model predictive accuracy than are the reliability statistics proposed by LWG in the draft BERA, 
all of which can be affected by the low prevalence of toxicity in the Portland Harbor sediment 
toxicity datasets.   
 
Methods of Selecting Accurate Sediment Quality Benchmarks 
 
The statistics discussed to this point can all be used to interpret the reliability and predictive 
accuracy of both predictive models and the sediment quality benchmarks derived from the 
models.  Although the effect of benchmark values on the reliability statistics have already been 
discussed (Figure 3), there has been no discussion to this point on how to select sediment quality 
benchmarks that maximize predictive accuracy.   
 
For the BERA, the most accurate sediment quality benchmarks are those that simultaneously 
minimize both false positive and false negative predictions of toxicity.  This is a different goal 
than a screening level ecological risk assessment (SLERA), where the goal is to conservatively 
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identify all chemicals potentially posing unacceptable risk, at the cost of a potentially elevated 
number of nontoxic stations incorrectly classified as toxic (i.e. an elevated false positive rate). 
 
A number of methods of benchmark selection have been discussed at some length in the 
statistical literature.  Although there are numerous studies that have evaluated the statistical 
properties of the various reliability statistics discussed in this comment, relatively few studies 
have compared the possible methods of deriving thresholds to identify the threshold selection 
methods that result in the highest predictive accuracy.  Two studies that have compared the 
predictive accuracy of different threshold selection methods in ecology are those of Freeman and 
Moisen (2008) and Liu et al. (2005). 
 
Toxicity data is expressed on a continuous scale, e.g., mortality can take any value between 0 – 
100%.  The feasibility study is concerned with summarizing this range of toxicity values into two 
groups:  toxic or nontoxic.  In statistical terms, the feasibility study dichotomizes the data into 
two groups.  Dichotomizing continuous data into two groups results in some loss of information, 
and is a source of uncertainty.  The BERA, which breaks the toxicity data into four groups, still 
requires the selection of thresholds to transform the continuous toxicity data into four groups:  
Level 0, 1, 2 and 3, or no, low, moderate and severe toxicity. 
 
The threshold selected to divide toxic from nontoxic samples has, as discussed earlier, a large 
effect on the values of reliability statistics, including how prevalence of toxicity is defined.  
Within the BERA, EPA requires objective approaches to evaluating both predictive model and 
sediment quality benchmark reliability.  Objective threshold selection methods are those that 
maximize agreement between observed and predicted distributions of toxicity (Liu et al. 2005). 
 
 Sediment Quality Benchmark Derivation in the Draft BERA 
 
The sediment quality benchmark derivation approach used by the LWG follows directly from 
their approach to evaluating toxicity predictive model reliability.  As applied to the floating 
percentile model, the LWG started by defining an allowable false negative rate, and then 
increased individual chemical concentrations upward until false positive rates were minimized, 
while retaining the predefined false negative rate.  This approach is termed the required 
sensitivity method of optimizing threshold values by Freeman and Moisen (2008), one of 11 
threshold optimization approaches they reviewed. 
 
The reason for the name required sensitivity method becomes clear when it is remembered that 
the false negative rate is the complement of sensitivity (i.e. the sum of the false negative rate and 
sensitivity always equals 1).  In addition to an a priori definition of false negative rate (e.g. 
0.20), the LWG approach also results in an a priori definition of sensitivity (i.e. 0.80 given the a 
priori definition of a false negative rate of 0.20). 
 
Once the false negative rate and its complement sensitivity are defined, the floating percentile 
model increases individual chemical concentrations upwards until false positive rates are 
minimized, while maintaining the predefined false negative rate and sensitivity.  By minimizing 
false positive rates, the floating percentile model also maximizes specificity (efficiency in the 
BERA), the complement of the false positive rate.  Specificity is the true negative rate, the 
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proportion of truly nontoxic samples correctly predicted by a model or sediment quality 
benchmark.   
 
By design, the floating percentile model therefore maximizes the number of nontoxic samples 
correctly predicted to be nontoxic.  As the FPM increases sediment concentrations, the 
specificity (true negative rate) increases, while concurrently the number of false positives 
decreases.  A consequence of the floating percentile model maximizing specificity is that the 
number of false negatives (toxic samples incorrectly classified as nontoxic) cannot be 
indefinitely maintained as a constant, but instead has to begin to increase as sediment 
concentrations in the FPM are increased. 
 
In a conservative risk assessment, a goal is to minimize the number of false negatives (i.e. 
number of truly toxic locations incorrectly classified as nontoxic), because the risk assessor 
wants to ensure all locations and chemicals that pose potentially unacceptable risks are 
identified.  At some point as sediment concentrations are increased in the FPM, the number of 
toxic samples incorrectly classified as nontoxic will begin to increase, which is not an acceptable 
situation in a risk assessment. 
 
For use in a risk assessment, a floating percentile model approach that is the opposite of what the 
current FPM does may be more appropriate.  In such an approach, which Freeman and Moisen 
(2008) term the required specificity method, the model would start by defining an a priori false 
positive rate (the complement of specificity, which is why Freeman and Moisen term this 
threshold derivation method the required specificity method), then lower sediment chemical 
concentrations until the sensitivity of the model (i.e. the true positive rate) is maximized while 
maintaining the predefined false positive rate.  Such an approach would maximize the number of 
toxic stations correctly predicted as toxic, a goal of a conservative risk assessment.   
 
As currently constructed, the floating percentile model cannot maximize sensitivity, the number 
of toxic stations correctly classified as toxic.  At best, the FPM can define a sensitivity and its 
complement the false negative rate.  In any event, previous reviews of reliability analyses and 
threshold optimization approaches (Fielding and Bell 1997, Liu et al. 2005, Freeman and Moisen 
2008) all concluded that reliability statistics and evaluation criteria based on a model or 
benchmark meeting user specified requirements are not objective measures of model or 
benchmark predictive accuracy, and thus are not comparable to objective predictive accuracy 
measures that do not require a priori specification of one or more values of reliability statistics.  
While EPA believes these subjective approaches are not appropriate measures of reliability or 
predictive accuracy in the BERA, they can and do have utility in the feasibility study and remedy 
selection phases of the Portland Harbor project.  A brief discussion of how subjective reliability 
measures and statistics can be used to inform management decisions in the feasibility study is 
provided at the end of this comment. 
 

Objective Methods for Selecting Sediment Quality Benchmark Thresholds 
 
Both Feeeman and Moisen (2008) and Liu et al. (2005) identify multiple objective methods for 
selecting thresholds from dichotomized data.  Unfortunately, not all of the approaches they 
identified are based on using the information in a contingency table to directly derive threshold 
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values.  For the purposes of this comment, EPA will limit the discussion of objective threshold 
selection methods to those that can be derived from a contingency table. 
 
Several approaches of objective threshold selection are available that are based on maximizing 
the value of one or more of the reliability statistics described in Table 1.  Among them are 
maximizing the overall reliability, maximizing the sum of sensitivity plus specificity, and a 
related approach of selecting a threshold at the point where sensitivity equals specificity.  All of 
these methods are among the methods evaluated by both Freeman and Moisen (2008) and Liu et 
al. (2005), who both concluded that despite its inherent and seemingly common sense appeal, 
maximization of overall reliability (i.e. maximizing the sum of correctly predicted toxic and 
correctly predicted nontoxic samples) is not a particularly reliable approach for identifying 
thresholds or evaluating predictive models.  The reason overall reliability maximization is not 
considered a particularly reliable method of defining thresholds between toxic and nontoxic 
concentrations derives from the adverse effect of prevalence on the values and interpretation of 
the overall reliability statistic. 
 
Liu et al. (2005) and Freeman and Moisen (2008) came to somewhat different conclusions 
regarding the utility of maximizing the sum of sensitivity and specificity, or setting sensitivity 
equal to specificity.  Liu et al. (2005) believe that these two approaches are among the better 
approaches for objectively selecting thresholds of dichotomized data.  Freeman and Moisen 
(2008) did not rate maximizing the sum of sensitivity and specificity or setting sensitivity equal 
to specificity as among the better threshold optimization methods they evaluated, but they were 
not among the worst, either. 
 
 Kappa Maximization 
 
As discussed previously, kappa maximization is commonly used in both medical diagnostics 
(Hripcsak and Heitjan 2002) and ecology (Allouche et al. 2006) to evaluate contingency table 
data and predictive model accuracy.  It is widely used to evaluate logistic regression models, 
where it is one of the standard outputs of statistical software that can be used to evaluate model 
accuracy.  Its absence from the reliability analyses used by the LWG in the draft BERA in 
evaluating logistic regression model reliability was the original statistical issue EPA had with the 
reliability analyses that led to this comment. 
 
When applied to logistic regression, the objective use of kappa maximization to evaluate model 
accuracy and sediment quality benchmark selection involves selecting an optimum probability 
threshold based on the benchmark dividing nontoxic from toxic that maximizes kappa. This is 
determined by evaluating kappa values at successive probability increments across the entire 
probability range from 0.0 to 1.0. 
 
For generic sediment quality benchmarks such as PECs and benchmarks derived from the 
floating percentile model, it is not possible to change the benchmark in order to find the 
contingency table resulting in the maximum number of true positives and true negatives.  
Instead, the benchmark is compared to the observed sediment chemistry at each of the 293 
Portland Harbor stations with measured toxicity data, and the numbers of correctly and 
incorrectly predicted toxic and nontoxic stations are entered into the appropriate contingency 
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table cells.  Once this has been accomplished, kappa can be calculated and interpreted using the 
framework proposed by Landis and Koch (1977), which was presented earlier in this comment. 
 
Freeman and Moisen (2008) found that kappa maximization had the lowest bias of all 11 of the 
threshold optimization methods they evaluated.  This feature of kappa maximization would 
reduce uncertainties associated with predictive models and sediment quality benchmarks in the 
BERA. 
 
Although not explicitly evaluated by either Freeman and Moisen (2008) or Liu et al. (2005), 
maximization of the Hanssen-Kuipers discriminant, PABAK and the NMI conceptually would 
also be objective methods of describing predictive model and sediment quality benchmark 
reliability. 
 
 Receiver Operating Characteristic (ROC) Curves 
 
A statistical procedure commonly used in medical diagnostics to develop interpretive guidelines 
for test procedures is the receiver operating characteristic3 (ROC) curve.  ROC curves (Figure 
5a-d) are obtained by plotting all sensitivity values (true positive fraction) on the y-axis against 
their equivalent (1 - specificity) values (false positive fraction) plotted on the x-axis for all 
available thresholds or benchmarks.  The ROC curve thus generated is plotted as a curve in what 
is termed a unit square.  The curve starts in the lower left hand corner of the unit square, rises 
rapidly towards the upper left hand corner of the unit square, then flattens out before ending at 
the upper right hand corner of the unit square.  ROC curves have been previously used by Shine 
et al. (2003) to develop sediment quality benchmarks for metals. 
 
A model that has perfect ability to separate toxic from nontoxic samples would plot as a vertical 
line starting at the lower left hand corner of the plot, going to the upper left hand corner of the 
plot, then become a horizontal line running from the upper left hand corner to the upper right 
hand corner of the plot.  A model with no ability to discriminate between toxic and nontoxic 
would appear as a diagonal line running from the lower left hand corner to the upper right hand 
corner of the unit square.  Models with intermediate discriminatory ability appear as arcs or 
curves.  The ROC curve itself is comprised of threshold or benchmark values, with each point on 
the curve corresponding to a specific true positive-false positive pair of values. 
 
If the ROC plot is a smooth curve, any tangent to the ROC curve identifies a particular 
sensitivity/specificity pair.  The point of the ROC curve closest to the upper left hand corner of 
the plot is defined as the point where the tangent to the curve has a slope of 1.0.  The point on an 
ROC curve where the tangent to the curve equals one represents the threshold or benchmark that 
does the best job of separating toxic from nontoxic samples.  Many medical diagnostic 
benchmarks, such as the definition blood glucose levels >110 mg/dL as indicative of elevated 
blood glucose levels in individuals who should undergo definitive testing for diabetes 
(Somannavar et al. 2009) have been derived through the use of thresholds from an ROC curve.   
 

                                                 
3 The unusual name of this statistic comes from its development by the British during World War II, when it was 
used to evaluate the ability of radar receiver operators to correctly separate friendly from enemy aircraft. 
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If the ROC plot is a stepped curve instead of the smooth curves shown in Figure 5, the equivalent 
sensitivity/specificity pair is found by moving a line, with slope m, from the top left corner of the 
ROC plot to the ROC curve.  The threshold that results in the shortest possible line between the 
ROC curve and the upper left hand corner of the ROC unit square, termed the minimum ROC 
distance approach for threshold determination by Freeman and Moisen (2008) is found by the 
minimizing the following quantity: 
 

(1 – Sensitivity)2 + (Specificity – 1)2

 
The above equation can be used to approximate the threshold of an ROC curve at the point 
where the tangent to the curve has a slope of 1.0. 
 
In addition to providing an objective method for identifying thresholds or benchmarks, the ROC 
methodology also provides a way to measure model predictive accuracy.  The area under the 
curve (AUC) of the ROC plot relates relative proportions of correctly classified (true positives) 
and incorrectly classified (false positives) in contingency table cells over all possible threshold 
values.  This makes the area under a ROC curve a threshold–independent measure of model 
predictive accuracy (Pearce and Ferrier 2000).   
 
The AUC ranges between 0.5 for models with no discrimination ability between toxic and 
nontoxic to 1.0 for models with perfect discrimination ability between toxic and nontoxic 
locations.  A subjective guide for interpreting AUC values is that proposed by Swets (1988):  
 
AUC = 0.90–1.00: excellent ability to discriminate between toxic and nontoxic 
AUC = 0.80–0.90: good ability to discriminate between toxic and nontoxic 
AUC = 0.70–0.80: fair ability to discriminate between toxic and nontoxic 
AUC = 0.60–0.70: poor ability to discriminate between toxic and nontoxic 
AUC = 0.50–0.60: failure to discriminate between toxic and nontoxic 
 
AUC values of less than 0.5 indicate that the model tends to predict toxicity at nontoxic sites, 
indicating that the model parameters should be reversed. 
 
Although ROC curves can be generated with spreadsheets, most ROC analyses are performed 
with statistical software designed to perform the analysis.  Many of the larger statistical software 
packages such as Systat now contain ROC modules.  Several smaller packages that specialize in 
ROC analyses, such as MedCalc, are also available. 
 
Likelihood Ratios and Predictive Accuracy for Sites without Measured Toxicity Data 
 
Consider the most common situation regarding sediment sampling locations in Portland Harbor, 
which is:  
 

1. we know the concentration of chemicals in sediment, and  
2. for chemicals with sediment quality benchmarks, we know if the sediment concentrations 

exceed their respective sediment quality benchmarks, but 
3. we do not have any measured sediment toxicity data from the location, thus  
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4. we do not know whether the location actually elicits toxicity in benthic biota 
 
In this common situation, we have knowledge of sediment chemistry analyses, but the ecological 
significance of the test results is uncertain.  Consequently, the problem becomes deciding 
whether any given sediment chemistry analysis represents a true or false positive for toxicity if 
the sediment quality benchmark is exceeded, or whether the sediment chemistry analysis 
represents a true or false negative for toxicity if the sediment quality benchmark is not exceeded. 
 
In the BERA, EPA makes the assumption that any sediment chemical concentration that equals 
or exceeds its sediment quality benchmark (i.e. the hazard quotient ≥ 1) poses some level of 
unacceptable risk to benthic biota.  In the feasibility study, where the economic costs of 
remediating locations with acceptable levels of risk are substantial, and the environmental costs 
of not remediating areas posing unacceptable risks are also substantial, risk managers want to 
know how much confidence to place in a sediment quality benchmark that predicts a given 
location to be toxic or nontoxic to benthic biota. 
 
For a station whose sediment chemistry exceeds one or more sediment quality benchmarks, and 
therefore is predicted to be toxic, the question can be addressed by calculating the ratio of true 
positives to false positives.  The true positive rate of a model or benchmark is its sensitivity 
(Table 2).  The true negative rate of a model or benchmark is its specificity, which means that the 
false positive rate is the complement of the specificity, or the quantity (1 – specificity).  The ratio 
of the true positive rate to the false positive rate is sensitivity / (1 – specificity).  This ratio is 
termed a likelihood ratio.   
 
Likelihood ratios are actually odds, and are interpreted as follows.  If a predictive model or 
sediment quality benchmark results in a contingency table yielding a likelihood ratio of 10, the 
value of 10 is interpreted to mean that the odds are 10:1 that a prediction of toxicity represents a 
station that would elicit toxicity if measured toxicity data became available from the station.  In 
the statistical literature, the commonly seen term “:1” is usually not seen or reported, but is 
implied when describing a likelihood ratio. 
 
Two types of likelihood ratios can be calculated from each contingency table (Table 1):  a 
positive likelihood ratio (LR+) and a negative likelihood ratio (LR-).  Positive likelihood ratios 
describe the odds of a station being a true positive if a benchmark or model predicts that station 
to be toxic.  The larger the values of a positive likelihood ratio, the higher the odds are that a 
station truly would elicit toxicity if a toxicity test were to be performed at that station.  In other 
words, the larger a positive likelihood value is, the more confidence one can have in drawing a 
conclusion that a station really would elicit toxicity. 
 
As is the case for interpreting kappa, PABAK or the Hanssen-Kuipers discriminant, scales for 
interpreting likelihood ratios are somewhat subjective.  Likelihood ratios measure the power of a 
model or benchmark to change the pre-test into the post-test probability of toxicity being present. 
One interpretive framework for interpreting positive likelihood ratios is the following: 
 
LR+ = 1.0:  no predictive ability 
LR+ = 1.0 – 2.0:  rarely important change from pretest to posttest probability 
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LR+ = 2.0 – 5.0:  small change 
LR+ = 5.0 – 10:  moderate change 
LR+ = >10:  large change 
 
Conversely, a negative likelihood ratio describes the odds of a false negative if a model or 
benchmark predicts a location to be nontoxic.  The smaller the value of a negative likelihood 
ratio, the better a model or sediment quality benchmark is at ruling out toxicity if a toxicity test 
were to be performed at that station.  A LR- value of 0.25 indicates that the odds are 1:4 (false 
negatives:true negatives) that a prediction of no toxicity represents a station that would exhibit 
toxicity if measured toxicity data were available.  One interpretive framework for interpreting 
negative likelihood ratios is the following: 
 
LR- = 1.0:  no predictive ability 
LR- = 0.5 – 1.0:  rarely important change from pretest to posttest probability 
LR- = 0.2 – 0.5:  small change 
LR- = 0.1 – 0.2:  moderate change 
LR- = 0 – 0.1:  large change 
 
Likelihood ratios are unaffected by prevalence in a data set.  Likelihood ratios also have an 
advantage over many of the other reliability statistics discussed in this comment, as they can be 
applied to predictions of toxicity at individual sediment sampling stations, not just to the entire 
population of sediment sampling stations.  Thus, they should provide useful information 
regarding the accuracy of model and sediment quality benchmark values in toxicity predictions 
at individual stations without measured toxicity data. 
 
Likelihood ratios provide information regarding predictive accuracy in their own right, but take 
on their greatest importance when used to make posttest predictions regarding the ability of a 
predictive model or sediment quality benchmark to discriminate between toxic and nontoxic 
stations.   
 
Before the utility of likelihood ratios in benthic toxicity predictive accuracy can be fully 
appreciated, the terms pretest and posttest probability in the interpretive frameworks for 
likelihood ratios need to be more fully explained.  The two terms are defined as follows: 
 

• A pretest (prior) probability is an initial probability value originally obtained before any 
additional information is obtained. 

• A posttest (posterior) probability is a probability value that has been revised by using 
additional information that is later obtained. 

 
A likelihood ratio can be used to give the posttest odds of the model or benchmark prediction 
being correct.  In the context of the Portland Harbor BERA, the pretest probability of toxicity is 
simply the prevalence of toxicity in each of the four sets of empirical toxicity data measured at 
the 293 stations with co-occurring sediment toxicity and sediment chemistry data.  Posttest 
probabilities of toxicity will be calculated from the sediment chemistry data collected from the 
remaining sediment sampling stations in Portland Harbor without measured toxicity data.  The 
term posttest in this context simply means additional sediment chemistry data collected at 
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stations other than the 293 stations with measured toxicity data.  Posttest does not mean that the 
sediment chemistry data was collected after the sediment toxicity tests were performed. 
 
When combined with the bias (systematic error) statistic, which gives the direction of error for 
both predictive models and the sediment quality benchmarks derived from them (either 
overpredicting or underpredicting toxicity), the reliability statistics not affected by prevalence or 
which can be adjusted to account for prevalence effects should provide an appropriate 
description of the uncertainty associated with the predictive models and sediment benchmarks 
derived from them.  These uncertainties should be discussed in the appropriate uncertainty 
sections of the BERA.   
 
What must not be done in the BERA is to eliminate any lines of evidence or individual sediment 
quality benchmarks, or any chemical hazard quotients greater than or equal to one from the 
BERA because of a perceived lack of reliability.  It is EPA’s responsibility to make the risk 
management decisions regarding the use of any particular predictive model or sediment quality 
benchmark within the remainder of the remedial investigation and feasibility study for Portland 
Harbor.  Risk management decisions will be made and documented by EPA in the feasibility 
study, not the BERA or the remedial investigation report.  The uncertainties associated with the 
predictive models, as described and quantified by reliability statistics will inform EPA’s risk 
management decisions, but will not be the sole basis for EPA’s management decisions at 
Portland Harbor. 
 
EPA is unaware of any one reliability metric that is superior to all others in all situations.  All 
reliability statistics discussed in this comment have issues that should be recognized and which 
can affect their interpretation.  Therefore, we are in agreement with LWG that multiple reliability 
metrics should be calculated and evaluated as measures of the accuracy of the FPM, LRM and 
sediment quality benchmarks in predicting sediment toxicity to benthic invertebrates at locations 
in Portland Harbor without empirical sediment toxicity data.   
 
The Bridge Between the Use of Reliability Statistics in the BERA and in the Feasibility 
Study 
 
Within the feasibility study, many management decisions will be made based on the information 
in the BERA and the rest of the remedial investigation report.  One of the most important and 
difficult decisions to make will be the need, if any, for remediation of locations without any 
empirical (measured) sediment toxicity data.  The answer to the question of the area to be 
remediated to protect benthic biota will depend in part on the reliability of sediment quality 
benchmarks, either those previously published, or those derived specifically for Portland Harbor 
in the BERA. 
 
Overall accuracy of either the floating percentile or logistic regression models will not answer 
the above question.  Instead, what is needed is an answer to the following general question: 
 

What is the probability of toxicity to benthic biota if a chemical concentration at a site 
without measured toxicity data exceeds a sediment quality benchmark? 
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The answer to this question can be calculated if three pieces of information are known: 
 

1. The prevalence of toxicity 
2. What fraction of the toxic stations are correctly predicted by a sediment quality 

benchmark (i.e. what is the sensitivity of the benchmark), and 
3. What fraction of the nontoxic stations are correctly predicted by a sediment quality 

benchmark (i.e. what is the specificity of the benchmark) 
 
The above three pieces of information need to be combined in a way that allows the prediction of 
toxicity at stations without measured toxicity data, which at first would appear to be a difficult 
task. 
 
The solution to the above question involves the use of Bayes theorem.  Bayes theorem is a way 
of understanding how the probability that a theory is true is affected by a new piece of evidence.  
The theory we wish to test at Portland Harbor is whether a site is toxic to benthic biota given that 
a sediment quality benchmark is exceeded. 
 
This theorem, developed by Rev. Thomas Bayes and originally published in 1763, relates the 
conditional probability of occurrence of an event to the probabilities of other events that have 
already occurred.  Several different formulations of Bayes theorem exist.  For Portland Harbor, 
we will answer the above question of the probability of toxicity at stations without measured 
toxicity data by using the following formula (Equation 1), which is one definition of Bayes 
theorem.   
 
Equation 1: 
 

Posttest odds = Pretest odds x likelihood ratio 
 
Unlike the other reliability statistics discussed to this point, application of Bayes theorem 
produces results called posterior probabilities, which are revised probabilities based on new 
information.  Bayes theorem forms the basis of much of our thinking in conditional probability 
and making "predictions" statistically based on historical data.  In the case of Portland Harbor, 
application of Bayes theorem will permit estimates of the likelihood that a station without 
measured toxicity data will elicit toxicity in either Chironomus dilutus or Hyalella azteca 
survival or biomass based solely on exceedance of a sediment quality benchmark. 
 
Bayesian statisticians base statistical inference on a number of philosophical underpinnings that 
differ in principle from classical statistical thought.  First, Bayesians believe that research results 
should reflect updates of past research.  In other words, prior knowledge should be incorporated 
formally into current research to obtain the best 'posterior' or resultant knowledge.  Second, 
Bayesians believe that much can be gained from insightful prior, subjective information as to the 
likelihood of certain types of events.  Third, Bayesians use Bayes theorem to translate 
probabilistic statements into degrees of belief, instead of a classical confidence interval 
interpretation. 
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Bayesian statistics can be used to answer the following type of question, which is of interest to 
feasibility study managers regarding the predictive accuracy of sediment quality benchmarks: 
 

If 7.2% of Portland Harbor sampling stations cause elevated mortality in Hyalella 
azteca (i.e. prevalence of toxicity is 7.2%), and a PCB sediment quality benchmark has 
a false positive rate of 0.20 and a false negative rate of 0.20, what is the probability that 
a random sediment station with a PCB concentration exceeding the benchmark will 
actually elicit increased mortality in Hyalella? 

 
The answer to the above question is that the post test probability of toxicity is 0.2368, roughly a 
one in four chance that a station without measured toxicity data, but whose sediment PCB 
concentration exceeds the PCB benchmark will elicit increased mortality of Hyalella azteca.  But 
how was this answer obtained? 
 
The first piece of information needed is the pretest odds of toxicity.  Normally this is a difficult 
piece of information to obtain.  Fortunately for Portland Harbor, we have the empirical toxicity 
test results from 293 sediment sampling stations with co-occurring toxicity and chemistry data.  
The pretest probability of toxicity for each of the four sets of toxicity test data (Chironomus 
survival and biomass, Hyalella survival and biomass) is simply the prevalence of toxicity for 
each test, which for feasibility study purposes is given in Table 4. 
 
Prevalence however is a probability, not the odds of toxicity.  Probability and odds can be readily 
converted to each other by the following equations: 
 
Equation 2: 
 

Probability = Odds / (Odds + 1) 
 
Equation 3: 
 

Odds = Probability / (1 – Probability) 
 
By converting the measured prevalence of toxicity into the pretest odds of toxicity (Equation 3), 
we can then use Equation 1 to multiply the pretest odds of toxicity by the positive likelihood 
ratio of toxicity (Table 1) calculated from a contingency table to obtain the posttest odds of 
toxicity at a given station.  If desired, the posttest odds of toxicity can be back transformed to the 
posttest probability of toxicity at the station (Equation 2). 
 
A number of sediment sampling locations within Portland Harbor have two or more sediment 
quality benchmarks that are exceeded.  Bayes theorem can be expanded to calculate the posttest 
odds or probability of toxicity at stations with two or more sediment quality benchmarks that are 
exceeded.  As long as each chemical whose sediment quality benchmark is exceeded at a 
location has an available positive likelihood ratio value, Equation 1 can be expanded to 
incorporate multiple likelihood ratios as shown in Equation 4. 
 
Equation 4: 
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 Posttest odds = Pretest odds x LRchemical 1 x LRchemical 2 x . . . x LRchemical n
 
Where: 
 
     LR = positive likelihood ratio for each chemical’s sediment quality benchmark 
     n = number of chemicals at station whose sediment quality benchmarks are exceeded 
 
Pretest odds used with Equation 4 are the same as those used with Equation 1:  the prevalence of 
toxicity for whichever of the four available sets of measured toxicity data (Chironomus survival 
or biomass, Hyalella survival or biomass) is under evaluation. 
 
The posttest odds calculated by Equation 4 are limited by the important assumption that each of 
the individual sediment quality benchmark likelihood ratios are independent of each other.  
Equation 4 permits estimation of posttest odds of toxicity at any sampling location without 
measured toxicity data that has any number of chemicals whose concentrations exceed their 
respective sediment quality benchmarks.  As before, odds can be back transformed into 
probability of toxicity if desired.  A sampling station with multiple chemicals that exceed their 
sediment quality benchmarks will have a higher probability of eliciting toxicity in benthic biota 
than will a station with only one sediment quality benchmark that is exceeded. 
 
Two Additional Issues that May Affect All Reliability Statistics 
 
 Spatial Autocorrelation 
 
One predictive model uncertainty not discussed to this point, but one that will affect all reliability 
statistics for all models and sediment benchmarks is the issue of spatial autocorrelation.  Spatial 
autocorrelation occurs when the presence, absence, or degree of a certain characteristic at one 
location affects the presence, absence, or degree of the same characteristic in neighboring 
locations.  In the context of Portland Harbor, it is the tendency of a sampling station to possess 
characteristics, such as chemical concentrations, the mixtures of chemicals present, and physical 
characteristics such as grain size distribution, that are more similar to those of their nearest 
neighboring sampling stations, and less similar to stations further away.  Spatial autocorrelation 
is a potential problem for all area-based studies (Fielding and Bell 1997). If sample data are 
spatially autocorrelated, the assumption of independence between samples is violated, leading to 
problems with the significance of test statistics.  Spatial autocorrelation can arise when the 
probability of toxicity at one location is not independent of the probability of toxicity at 
neighboring stations.  Spatial autocorrelation effects are likely to result in reliability statistics 
values that overpredict the reliability of all sediment toxicity models and sediment quality 
benchmarks used in the BERA. 
 
In practical terms, spatial autocorrelation may provide some useful information for managers in 
the feasibility study.  If two stations are predicted to elicit a similar level of toxicity, but one 
station is adjacent to an area of potential concern (AOPC) boundary, while the second station is 
distant from any AOPC, the proximity of the first station to an AOPC may provide qualitative 
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support for adjusting the AOPC boundary to include the area around the station predicted to be 
toxic. 
 

Scaling to Contingency Tables Larger than 2 x 2 
 
To this point, most comments and discussions have been limited to 2 x 2 contingency tables.  As 
noted early in this comment, the BERA is evaluating four levels of toxicity (no, low, moderate 
and severe) as opposed to the two levels of toxicity (toxic or nontoxic) of concern in the 
feasibility study. 
 
Fortunately, to evaluate predictive accuracy of models that evaluate multiple levels of toxicity, or 
sediment quality benchmarks dividing no from low, low from moderate, and moderate from high 
toxicity in the BERA, nearly all of the statistics presented in Table 1 can be scaled upward to 
evaluate multiple categories.  Included in the reliability statistics that can be expanded to 
evaluate 2 x 4 contingency tables are some of the more complex measures such as kappa (Fleiss 
1981, Fleiss 1971).  Computation of reliability statistics from contingency tables larger than 2 x 
2 are given in several sources, including Liu et al. 2007.  The primary statistics discussed in this 
comment that cannot be expanded to evaluate contingency tables larger than 2 x 2 are the tangent 
of an ROC curve and the area under the curve of the ROC curve. 
 
One additional, simply applied method that could evaluate the 2 x 4 contingency tables from the 
BERA would be to dichotomize them, then evaluate as a series of 2 x 2 contingency tables.  In 
practice, this would mean evaluating benchmarks that would be thresholds between Level 0 and 
Level 1 toxicity, thresholds between Level 1 and Level 2 toxicity, and thresholds between Level 
2 and Level 3 toxicity.  The feasibility study definition of toxicity evaluated extensively in this 
comment is nothing more than an evaluation of sediment quality benchmarks from a 2 x 4 
contingency table dichotomized to evaluate thresholds between the sum of Level 0 plus Level 1 
toxicity, and the sum of Level 2 plus Level 3 toxicity. 
 
Example Calculations of Reliability Statistics for Generic Sediment Quality Benchmarks, 
Logistic Regression Derived Benchmarks and Floating Percentile Model Derived 
Benchmarks 
 
Need final results of model outputs to perform.  Pick as an example a chemical such as total PCB 
that has benchmarks from all three sources of benchmarks (generic SQBs, LRM, FPM) 
 
Inclusion of Remedial and Environmental Costs in Reliability Statistics 
 
This last section of our comment on reliability statistics discusses the incorporation of remedial 
cost data or management goals into reliability statistics and the derivation of sediment quality 
benchmarks.  In the BERA, EPA has assumed that the effects of false positive and false negative 
errors in predicting sediment toxicity are equal.  Risk managers may decide that it is more 
important to them to, for example, develop conservative remedial goals that are protective of 
human health and the environment, at the cost of mistakenly requiring remediation of a few 
locations that would not elicit toxicity if empirical toxicity data were available.   
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As the weighting of costs requires management decisions not within the purview of risk 
assessors, we do not perform any calculations of reliability or sediment quality benchmark 
derivation weighted to account for costs.  Instead, we identify a general procedure for 
incorporating costs and management goals into the calculation of reliability statistics, and 
provide several literature citations so that managers with interest in using costs and management 
goals to come to their final decisions on sediment quality benchmarks can perform their detailed 
analyses of costs. 
 
Several investigators (Zweig and Campbell 1993, Fielding and Bell 1997, Liu et al. 2005) 
discuss the use of ROC plots in making management decisions that incorporate the weighting of 
costs or management goals in threshold or benchmark derivation.  To do so, an initial 
management decision must be made of the costs of false positive and false negative errors.  
Assigning values to these costs is complex, at least partially subjective, dependent upon the 
context within which the sediment quality benchmark will be used, and falls into the realm of 
risk management decisions.  As a guideline Zweig and Campbell (1993) suggest that if false 
positive costs (FPC) are greater than false negative costs (FNC), or FPC > FNC, the threshold 
(sediment quality benchmark) should favor specificity (i.e. the selected threshold should become 
less conservative, and should maximize the proportion of truly nontoxic samples that are 
correctly predicted). Sensitivity should be favored if FNC > FPC (i.e. the selected threshold 
should become more conservative, and should maximize the proportion of truly toxic samples 
that are correctly predicted).  Estimation of the ratio of false positive to false negative costs will 
also serve the purpose if actual dollar amounts cannot be assigned to the costs of false positives 
and false negatives.  
 
Once costs of false positive and false negative errors (or their ratio) have been defined, the 
prevalence (P) of toxicity is combined with the cost information, allowing the calculation of a 
slope (Zweig and Campbell 1993). 
 
m = (FPC/FNC) x ((1-P)/P)  
 
If the ROC plot is a smooth curve, m describes the slope of a tangent to this curve.  The point at 
which the tangent touches the curve identifies a particular sensitivity/specificity pair.  This point 
is the sediment quality threshold or benchmark that is weighted after costs have been taken into 
account. 
 
If the ROC plot is a stepped non-parametric curve the equivalent sensitivity/specificity pair is 
found by moving a line, with slope m, from the top left of the ROC plot.  The 
sensitivity/specificity pair is found where the line and the curve first touch (Zweig & Campbell 
1993).  Again, the point on the curve where the line touches the ROC curve is the sediment 
quality threshold or benchmark that is weighted to take the costs of false positive or negative 
errors into account. 
 
Summary, Conclusions and Recommendations 
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Despite the length and inherent complexity of some of the statistical discussions in this 
comment, the conclusions and recommendations from this evaluation can be summarized in 
relatively few points. 
 

1. No one reliability statistic is available that provides all information needed by risk 
assessors and risk managers to evaluate and utilize sediment quality benchmarks and 
predictive models of toxicity.  Multiple reliability statistics are needed. 

 
2. The LWG’s application of reliability measures in the draft BERA is not a true measure of 

model or sediment quality benchmark reliability, because one or more reliability statistics 
(e.g. false negative rate) were subjectively set at predefined values to meet LWG-
proposed risk management goals. 

 
3. Within the BERA, EPA expects the LWG to use an objective approach to determine 

predictive model and sediment quality benchmark accuracy and reliability.  By objective 
approach, EPA means that predictive models must be calibrated in such a manner that the 
sediment quality benchmarks derived from the models maximize the agreement between 
observed and model predicted toxicity for the 293 Portland Harbor stations for which co-
occurring sediment toxicity and sediment chemistry data are available. 

 
4. Prevalence of toxicity, defined as the proportion of stations in the four sets of measured 

sediment toxicity data (Chironomus dilutus survival and biomass, Hyalella azteca 
survival and biomass) from 293 sampling locations in Portland Harbor that actually elicit 
toxicity, is low, ranging between 7 – 25% of stations eliciting either Level 2 (moderate) 
or Level 3 (severe) toxicity, depending on which test one is discussing.  The low 
percentage of stations eliciting toxicity is an encouraging finding of the BERA, as it 
means between 75 – 93% of the 293 stations either elicit Level 0 (no toxicity), or Level 1 
(low) levels of toxicity. 

 
5. The low prevalence of toxicity in the 293 stations with co-occurring sediment chemistry 

and sediment toxicity data used to develop the site specific floating percentile and logistic 
regression predictive toxicity models adversely affects the calculated values of the 
reliability statistics presented in the draft BERA, as well as their interpretation, and can 
also bias the reliability statistics.   

 
6. The prevalence effect is a statistical problem that directly results from the low number of 

stations eliciting toxicity.  The problem is not due to a lack of sampling data, nor is it a 
criticism of any particular predictive modeling approach or sediment quality benchmark. 

 
7. All reliability statistics evaluated by the LWG in the draft BERA, as well as all additional 

reliability statistics recommended for use by EPA can be derived from a contingency 
table that tabulates the number of true positive, true negative, false positive and false 
negative predictions of toxicity made by any predictive model or any individual sediment 
chemical benchmark calibrated with or validated against the 293 stations with measured 
toxicity and sediment chemistry data. 
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8. The BERA is not a competition between multiple lines of evidence or approaches of 
estimating sediment toxicity to benthic biota, with the winner being the most reliable.  
Each of the three primary lines of evidence evaluating sediment chemistry (bulk sediment 
chemistry benchmarks such as PECs, logistic regression models and floating percentile 
models) provide different information to EPA risk assessors and risk managers, which is 
why each was included in the problem formulation for the BERA. 

 
9. The risk characterization conclusions, including all hazard quotient calculation results 

and their uncertainties from all three lines of evidence (generic sediment quality 
benchmarks, floating percentile model, logistic regression model) must be reported in the 
final BERA, because part of EPA’s risk assessment and risk management determinations 
will be made based on concordance between these multiple lines of evidence.  Use of 
reliability statistics in the BERA to eliminate lines of evidence or individual sediment 
quality benchmarks from risk analysis and risk characterization is unacceptable to EPA. 

 
10. EPA expects description of predictive model and sediment quality benchmark 

uncertainties to be the primary use of reliability statistics in the BERA.  Identification of 
models and benchmarks that maximize the agreement between predicted and measured 
toxicity (i.e. simultaneously minimize both false positives and false negatives) is also a 
valid use of reliability statistics in the BERA. 

 
11. EPA’s recommended solution to the effect of prevalence on reliability statistics is to base 

model reliability evaluations primarily on reliability statistics that can either be adjusted 
for prevalence, or whose values are not dependent on prevalence in the calibration 
dataset.   

 
12. Many of the statistics unaffected or unbiased by prevalence also have the useful property 

of assessing the extent to which models correctly predict toxicity at rates that are better 
than chance predictions of accuracy.   

 
13. To avoid information loss from not using all available information in a contingency table, 

reliability statistic are available that can be calculated using information from all 
contingency table cells.  The reliability statistics used by LWG in the draft BERA, while 
providing useful information, do not make use of all available information in contingency 
tables. 

 
14. Statistics not utilized by the LWG in the draft BERA, but which are unaffected by 

prevalence or can be adjusted to account for prevalence effects, utilize all information in 
a contingency table, and/or which describe the improvement of model or benchmark 
predictions over the agreement between predicted and measured toxicity expected solely 
by chance include the odds ratio, Cohen’s kappa, prevalence adjusted bias adjusted kappa 
(PABAK), the Hanssen-Kuipers discriminant, the normalized mutual information (NMI) 
statistic, and likelihood ratios.  These statistics and the other statistics identified by EPA 
but not used in the draft BERA, should be used in addition to and in conjunction with the 
reliability statistics used by LWG to obtain a more complete and accurate picture of 
model and benchmark reliability. 
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15. Of particular use in the BERA uncertainty analysis will be the statistic called bias, which 

identifies whether a model or benchmark systematically over- or underestimates toxicity, 
as well as identifying the direction of the bias. 

 
16. Of particular use in the feasibility study will be the statistics positive likelihood ratio and 

negative likelihood ratio.  Through the use of Bayes theorem, likelihood ratios, when 
combined with the measured prevalence in each of the four sets of sediment toxicity data, 
can be used to estimate the odds and/or the probability that an individual sampling station 
without measured toxicity data, but where one or more sediment quality benchmark is 
exceeded will be truly toxic.  Nearly all other reliability statistics in both the draft BERA 
and this comment only provide probabilities for the population of all sampling stations.  
Bayes theorem used in conjunction with likelihood ratios and prevalence give the odds or 
probability that an individual station predicted to elicit toxicity would in fact cause 
adverse effects if toxicity were actually measured at the station. 

 
17. Within the feasibility study, it may be desirable to weight the reliability statistics to 

incorporate the cost of remediation, or to account for the economic and/or environmental 
costs of decision errors resulting from sediment quality benchmarks that are either too 
conservative, resulting in unnecessary remediation of some locations, or which are not 
conservative enough and thus not fully protective of human health and the environment.  
Many, but not all of the reliability statistics discussed in this comment can be so 
weighted, although we have not weighted any statistics for use in the BERA. 

 
When combined with the bias (systematic error) statistic, which gives the direction of error for 
both predictive models and the sediment quality benchmarks derived from them (either 
overpredicting or underpredicting toxicity), the reliability statistics not affected by prevalence or 
which can be adjusted to account for prevalence effects should provide an appropriate 
description of the uncertainty associated with the predictive models and sediment benchmarks 
derived from them.  These uncertainties should be discussed in the appropriate uncertainty 
sections of the BERA.   
 
What must not be done in the BERA is to eliminate any lines of evidence or individual sediment 
quality benchmarks, or any chemical hazard quotients greater than or equal to one from the 
BERA because of a perceived lack of reliability.  It is EPA’s responsibility to make the risk 
management decisions regarding the use of any particular predictive model or sediment quality 
benchmark within the remainder of the remedial investigation and feasibility study for Portland 
Harbor.  Risk management decisions will be made and documented by EPA in the feasibility 
study, not the BERA or the remedial investigation report.  The uncertainties associated with the 
predictive models, as described and quantified by reliability statistics will inform EPA’s risk 
management decisions, but will not be the sole basis for EPA’s management decisions at 
Portland Harbor. 
 
EPA is unaware of any one reliability metric that is superior to all others in all situations.  All 
reliability statistics discussed in this comment have issues that should be recognized and which 
can affect their interpretation.  Therefore, we are in agreement with LWG that multiple reliability 
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metrics should be calculated and evaluated as measures of the accuracy of the FPM, LRM and 
sediment quality benchmarks in predicting sediment toxicity to benthic invertebrates at locations 
in Portland Harbor without empirical sediment toxicity data. 
 
As noted in Table 2, each reliability statistic discussed in this comment answers a different 
question.  The specific questions being asked of a sediment toxicity predictive model or sediment 
quality benchmark will to a large extent drive which reliability statistic(s) a user will consider or 
evaluate.  Risk assessors and risk managers will often be asking different questions, and thus will 
choose to evaluate or place more weight or emphasis on a different set of statistics.  The 
expanded list of reliability statistics available for use over and above the list provided in the draft 
BERA should provide risk assessors and risk managers the tools needed to answer the questions 
each will ask, or at the very least provide information that can be used to make informed risk 
assessment and risk management decisions. 
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Table 1.  Reliability measures, their definitions and calculation.  Formula terms correspond to their definitions in Figure 1. 
 
Reliability Measure Equivalent BERA 

Measure or Term 
Definition Formula 

Total number of cases Total sampling 
locations 

Number of stations with 
co-occurring toxicity and 
chemistry data 

N = A + B + C + D 

Prevalence No exact equivalent, 
sum of the number of 
Level 1, 2 and/or 3 
hits divided by total 
sampling locations 
closest BERA 
equivalent 

True proportion of 
stations with measured 
toxicity data exhibiting 
toxicity 

( )
N

CA+
 

Correct classification rate Overall reliability Proportion of all cases 
correctly predicted 

( )
N

DA+
 

False negative rate False negative rate Proportion of truly toxic 
samples predicted to be 
nontoxic 

( )CA
C
+

 

False positive rate False positive rate Proportion of truly 
nontoxic samples 
predicted to be toxic 

( )DB
B
+

 

Sensitivity (True positive 
rate) 

Sensitivity Proportion of truly toxic 
samples correctly 
predicted 

( )CA
A
+

 

Specificity (True negative 
rate) 

Efficiency Proportion of truly 
nontoxic samples 
correctly predicted 

( )DB
D
+

 

Positive predictive power Predicted hit 
reliability 

Probability of presence of 
toxicity given a model 
prediction of toxicity 

( )BA
A
+
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Reliability Measure Equivalent BERA 
Measure or Term 

Definition Formula 

Negative predictive power Predicted no-hit 
reliability 

Probability of absence of 
toxicity given a model 
prediction of nontoxic 

( )DC
D
+

 

Bias (Systematic error) Not used Tendency of model or 
benchmark to over- or 
underpredict toxicity 

( )
( )CA

BA
+
+

 

Overall diagnostic power Not used True proportion of 
stations not exhibiting 
toxicity 

( )
N

DB+
 

Misclassification rate Not used Proportion of all cases 
incorrectly predicted 

( )
N

CB+
 

Chance agreement Not used Level of agreement 
expected between 
predicted and measured 
toxicity if model or 
benchmark randomly 
classified stations as toxic 
or nontoxic 

( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

×⎟
⎠
⎞

⎜
⎝
⎛ +

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

×⎟
⎠
⎞

⎜
⎝
⎛ +

N
DB

N
DC

N
CA

N
BA

 

Odds ratio Not used Ratio of correctly 
assigned cases to 
incorrectly assigned cases 

( )
( )CB

DA
×
×

 

Not used Extent to which model 
predicts toxicity at a rate 
higher than expected by 
chance – unaffected by 
prevalence 

( ) ( )( )
( ) ( )

Hanssen-Kuipers 
discriminant (= true skill 
statistic = Youden’s J) ( )DBCA

CBDA
+×+

× − ×
  = ( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
+

+
1

DB
D

CA
A  = 

Sensitivity + Specificity - 1 
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Reliability Measure Equivalent BERA 
Measure or Term 

Definition Formula 

Kappa (= Cohen’s kappa)a Not used Extent to which model 
predicts toxicity at a rate 
higher than expected by 
chance – not adjusted for 
prevalence 

( ) ((( )( ) ( )( )) )[ ]
( )( ) ( )( )( )( )[ ]N/DCDBBACAN

N/DCDBBACADA
+++++−
+++++−+

 

Prevalence adjusted bias 
adjusted kappa (PABAK) 

Not used Extent to which model 
predicts toxicity at a rate 
higher than expected by 
chance – adjusted for 
prevalence and bias 

( ) ( )
N

CBDA +−+
 

Normalized mutual 
information (NMI) 

Not used The difference between 
the overall information in 
a contingency table and 
the information available 
in model or benchmark 
predictions 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ]DBDBCACANN

DCDCBABADDCCBBAA
+++++−

++++++−−−−
−

lnlnln
lnlnlnlnlnln1

 

Positive likelihood ratio Not used Probability that a station is 
a true positive divided by 
the probability that a 
station is a false positive 

( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

DB
D

CA
A

1
 = ( )ySpecificit-1

ySensitivit
 

Negative likelihood ratio Not used Probability that a station is 
a false negative divided by 
the probability that a 
station is a true negative 

( )

( )

( )
ySpecificit

ySensitivit1
1

−
=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

DB
D

CA
A
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Reliability Measure Equivalent BERA 
Measure or Term 

Definition Formula 

Pretest probability Not used Bayesian term for 
prevalence:  True 
proportion of stations with 
measured toxicity data 
exhibiting toxicity 

( )
N

CA+
 

Pretest odds Not used Bayseian term for 
likelihood of toxicity at a 
station before the toxicity 
test results are known.  In 
practical terms, 
prevalence expressed as 
odds of toxicity 

Prevalence1
Prevalence

1
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +

−

⎟
⎠
⎞

⎜
⎝
⎛ +

N
CA

N
CA

 

Posttest odds Not used Bayesian term for odds 
that a station elicits 
toxicity after toxicity tests 
or sediment chemistry 
analyses are performed 

( )

( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦

⎤
⎢⎣

⎡ +
−

⎟
⎠
⎞

⎜
⎝
⎛ +

DB
D

CA
A

N
CA

N
CA

11
 

 Page 43 of 48



Reliability Measure Equivalent BERA 
Measure or Term 

Definition Formula 

Posttest probability Not used Bayesian term for 
probability that a station 
elicits toxicity after 
information from 
measured toxicity tests or 
sediment chemistry 
analyses becomes 
available 

( )

( )

( )

( ) ⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +

−

⎟
⎠
⎞

⎜
⎝
⎛ +

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +

−

⎟
⎠
⎞

⎜
⎝
⎛ +

1
11

11

DB
D

CA
A

N
CA

N
CA

DB
D

CA
A

N
CA

N
CA

 
 
a- Although kappa is more commonly used than Hanssen-Kuipers in the statistical literature, kappa has been shown by Allouche et al. (2006) to be the special 
case of the Hannsen-Kuipers discriminant when prevalence = 0.5 (i.e. half the samples are toxic, half are not toxic).  The statistical literature is split regarding the 
magnitude of the effect of prevalence on the value of kappa.  This division among statisticians, along with the relative ease with which a variance term can be 
calculated for kappa, allowing for tests of significant differences in model predictive accuracy among different models, are likely among the reasons for the 
widespread use of kappa. 
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Table 2.  What question is answered by each reliability measure, what is the range of possible values for each measure, and 
some guidance to interpreting each reliability measure. 
 
Reliability Measure Question Answered Range of Values Perfect Score 
Prevalence What fraction of the total sampling locations with measured 

toxicity data were observed to elicit toxicity? 
0 to 1 Not applicable 

Correct classification rate 
(Overall reliability) 

Overall, what fraction of predictions were correct? 0 to 1 1 

False negative rate What fraction of the observed toxic stations were 
incorrectly predicted to be nontoxic? 

0 to 1 0 

False positive rate What fraction of the observed nontoxic stations were 
incorrectly predicted to elicit toxicity? 

0 to 1 0 

Sensitivity What fraction of the observed toxic stations were correctly 
predicted? 

0 to 1 1 

Specificity (Efficiency) What fraction of the observed nontoxic stations were 
correctly predicted? 

0 to 1 1 

Positive predictive power 
(Predicted hit reliability) 

What is the probability that a station actually elicits toxicity 
if the model or benchmark predicts it to be toxic? 

0 to 1 1 

Negative predictive power 
(Predicted no-hit 
reliability) 

What is the probability that a station does not elicit toxicity 
if the model or benchmark predicts it to be nontoxic? 

0 to 1 1 

Bias (Systematic error) How did the predicted frequency of toxicity compare to the 
observed frequency of toxicity? 

0 to ∞ 1 

Overall diagnostic power What fraction of the total sampling locations were observed 
to not elicit toxicity? 

0 to 1 Not applicable 

Misclassification rate Overall, what fraction of predictions were incorrect? 0 to 1 0 
Chance agreement How much of the agreement between predicted and 

measured toxicity is expected to be due solely to chance? 
0 to 1 0 

Odds ratio What is the ratio of the odds of a toxic prediction being 
correct, to the odds of a toxic prediction being wrong? 

0 to ∞ ∞ 
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Reliability Measure Question Answered Range of Values Perfect Score 
Hanssen-Kuipers 
discriminant (= true skill 
statistic = Youden’s J) 

How well did the predictive model or sediment quality 
benchmark separate the toxic stations from the nontoxic 
stations? 

-1 to +1 +1 

Kappa (= Cohen’s kappa) What is the proportion of agreement between model 
predictions and empirical toxicity data over and above 
agreement due solely to chance? 

-1 to +1 +1 

Prevalence adjusted bias 
adjusted kappa (PABAK) 

How well did the predictive model or sediment quality 
benchmark separate the toxic stations from the nontoxic 
stations after adjustment for prevalence and bias effects? 

-1 to +1 +1 

Normalized mutual 
information (NMI) 

How much of the information available in the measured 
toxicity data is included in model or sediment quality 
benchmark predictions of toxicity? 

0 to 1 +1 

Positive likelihood ratio How much have the odds of toxicity increased if a 
predictive model or sediment quality benchmark predicts a 
station to be toxic? 

1 to ∞ ∞ 

Negative likelihood ratio How much have the odds of toxicity decreased if a 
predictive model or sediment quality benchmark predicts a 
station to be nontoxic? 

0 to 1 0 

Pretest probability Bayesian term for prevalence:  What fraction of the total 
sampling locations with measured toxicity data were 
observed to elicit toxicity? 

0 to 1 Not applicable 

Pretest odds Bayseian term for prevalence expressed as odds:  What are 
the odds that any one of the 293 Portland Harbor stations 
with measured toxicity data will be observed to elicit 
toxicity? 

0 to 1 Not applicable 

Posttest odds Bayesian term that answers the following:  What are the 
odds that a random sediment station with a chemical 
concentration that exceeds its sediment quality benchmark 
will actually elicit increased toxicity? 

0 to ∞ ∞ 

 Page 46 of 48



Reliability Measure Question Answered Range of Values Perfect Score 
Posttest probability Bayesian term that answers the following:  What is the 

probability that a random sediment station with a chemical 
concentration that exceeds its sediment quality benchmark 
will actually elicit increased toxicity? 

0 to 1 1 
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A B TPF = True Positive Fraction
FPF = False Positive Fraction 
FNF = False Negative Fraction 
TNF = True Negative Fraction 
AUC = Area Under the Curve

Sediment quality 
benchmark 

=
Sensitivity 

=
Sensitivity 

Nontoxic 1 – Specificity = Toxic 1 – Specificity = 

C D 

=
Sensitivity 

=
Sensitivity 

1 – Specificity = 1 – Specificity = 

 
Figure 5.  Use of receiver operating characteristic (ROC) curves to select sediment quality benchmarks.  A.  Optimal 
benchmark that minimizes false positives and false negatives, benchmark on the ROC curve at the point closest to the upper 
left hand corner of the plot;  B.  Low benchmark resulting in few false negatives, but a high proportion of false positives, 
benchmark on ROC curve nearer to upper right hand corner of the plot; C. High benchmark resulting in few false positives, 
but a high proportion of false negatives, benchmark on ROC curve nearer to lower left hand corner of the plot; D. Site with 
little separation between sediment chemistry associated with toxic and nontoxic stations, area under the curve lower than at 
locations with better separation between toxic and nontoxic samples.  Toxicity distributions and sediment quality benchmarks 
same as in Figure 2. 
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